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ABSTRACT Simple single-gene disorders in humans can
be genetically mapped by using traditional methods of linkage
analysis and increasingly abundant restriction fragment length
polymorphisms (RFLPs). Many human diseases and traits,
however, can be expected to be genetically heterogeneous (i.e.,
caused by any one of several genes), and traditional linkage
analysis is much less effective in such circumstances. We
present two methods, interval mapping and simultaneous
search, designed to exploit the full power of a linkage map of
the DNA markers. For the simplest situations, only V3 as many
affected families are needed to map a heterogeneous trait by
using these methods. Only Vs-Vso as many are needed to detect
that genetic heterogeneity is present.

Since the idea was proposed (1), the use of DNA restriction
fragment length polymorphisms (RFLPs) as genetic markers
in human linkage studies has become common. A number of
diseases that display simple Mendelian inheritance, but
whose molecular etiology is unknown, have been genetically
shown to be closely linked to RFLP loci and thereby localized
to specific chromosomal regions. These include the autoso-
mal dominant diseases Huntington disease (2) and polycystic
kidney disease (3), the autosomal recessive cystic fibrosis
(4-7), and the chromosome X-linked recessive Duchenne
muscular dystrophy (8). In each case, randomly chosen
RFLP probes were tested one at a time for linkage to the
disease, using traditional methods (9, 10).
Many, perhaps most, human diseases and biologically

interesting traits, however, show more complex modes of
transmission, including genetic heterogeneity, variable pene-
trance, polygenic inheritance, and altogether noninherited
forms. Potential examples range from familial cancers and
ataxia-telangiectasia to genetic forms of alcoholism and
psychological disorders, if indeed any exist. Success in the
case of simple Mendelian inheritance raises the hope that the
RFLP approach can be used to elucidate these traits as well.
Unfortunately, traditional single-marker methods are ineffi-
cient for analyzing such complicated patterns of inheritance.
Our purpose here is to explore an alternative approach:

using a complete RFLP linkage map of the human genome.
The construction of such a map is feasible (11, 12) and is
already well underway (13, 14). By exploiting the full power
of such a complete RFLP linkage map, we believe we may
significantly reduce the number of families required for
studying complex traits.

In this paper, we consider genetic heterogeneity. If a
phenotype can be caused by mutations at any of several loci,
it is said to be genetically heterogeneous. In well-studied
organisms, such as the bacterium Escherichia coli, the yeast

Saccharomyces cerevisiae, the nematode Caenorhabditis
elegans, and the fruit fly Drosophila melanogaster, many
phenotypes are genetically heterogeneous. Humans will
likely be no different: in vitro complementation of cell lines
suggests that xeroderma pigmentosum may be caused by
mutations in as many as nine loci and ataxia-telangiectasia in
as many as five (15).
To see why genetic heterogeneity confounds single-marker

linkage analysis, consider a marker at a recombination
fraction 9 from a locus responsible for a fraction a of all
occurrences of a heterogeneous trait. In the overall popula-
tion, the chance that the marker will fail to cosegregate with
the trait through a meiosis is the "apparent" recombination
fraction 6' = Oa + ½2 (1 - a). Linkage will appear to be loose
if a is small, even though 0 may be small. Detecting loose
linkage requires many more observations than for tight
linkage, since loose linkage more closely resembles the null
hypothesis of nonlinkage. Moreover, even once linkage has
been detected, there remains the thorny problem of disen-
tangling the similar effects of high 6 and low a to obtain
accurate estimates of these quantities: this is necessary both
for locating the linked trait-causing gene and for testing
whether the trait is actually heterogeneous (a < 1). The only
distinction between close linkage to a heterogeneous trait and
correspondingly more distant linkage to a homogeneous trait
is that in the former case apparent crossovers will be
preferentially clustered in a certain fraction a of the families
examined (16, 17). Detecting this clustering can require
many, large pedigrees.

Neglecting to take account of even a modest degree of
heterogeneity can result in missing a linkage entirely. For
example, a trait-causing locus that accounts for 60% of all
cases could lie within 1% of a marker and yet still be
"excluded" by linkage analysis from a region of about 20%
recombination fraction around the marker, if we were to
assume (as is often done) that the trait is homogeneous.
We explore here two strategies designed to exploit the full

power of an RFLP map to overcome these obstacles:
(i) Interval mapping. With a map, we may test whether a

putative locus lies in an interval of known size between two
adjacent markers. This is a more demanding hypothesis-and
thus one easier to test-than whether the locus is linked to a
single marker at an unknown distance.

(ii) Simultaneous search. Mapping just one of the loci
causing a heterogeneous trait is inherently inefficient: the
"signal" in cases due to the locus is swamped by the "noise"
due to families segregating an unlinked locus. If we instead
examine the several trait-causing loci simultaneously, we can
extract a stronger, clearer "signal": in every family, at least
one of the loci will appear to cosegregate with the disease.

Abbreviations: RFLP, restriction fragment length polymorphism;
cM, centimorgan.
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DEFINITIONS AND ASSUMPTIONS

Mathematical Preliminaries. Comparing hypotheses in hu-
man genetics is typically done as follows (9, 10). Given a
pedigree, let X be the set of outcomes for the segregation in
the pedigree of the markers of interest (say, a disease and an
.RFLP to be tested for linkage) and letf1 andf2 be alternative
probability distributions onX (corresponding, say, to linkage
at 10% and nonlinkage). Each observation x E X yields odds
ratio fi(x)/f2(x) in favor off, over f2. We make observations
until the product of the odds ratios or, more conveniently, the
sum of the log1o of the odds ratios, called the lod score,
exceeds a predetermined threshold T (typically 3, corre-
sponding to 1000:1 odds). Thus, if f' is in fact the correct
distribution on X, the expected contribution to the lod score
(Elod) from a single observation is

correct hypothesis, then the expected lod score for Ho,, over
H112,0 (nonlinkage) is E(Pn,ma; Pn,112,O). Table 1 shows the
number of families needed to attain a lod score of 3, assuming
recombination fractions of 10% and 20% from the nearest
RFLP.**

Detecting Linkage: Using Interval Mapping. LetMand Nbe
adjacent RFLP loci at a known recombination distance A.
Using the power of the map, we may test the hypothesis
H' ,a: a locus L accounting for a fraction a of occurrences of
the trait lies in the interval, at a recombination fraction rfrom
M.

M L N

E(f1, f2) = E f1(x)log9f1(x)/f2(x)].
xGX

In mathematics, this is well known as the relative entropy or
Kullback-Liebler distance (18). The number of observations
needed so that the expected aggregate lod score exceeds T is
T/E(f1, f2)
Assumptions About an RFLP Map. The human genome is

about 3300 centimorgans long [1 centimorgan (cM) = 1%
recombination]. For simplicity, we assume below the avail-
ability of a linkage map of "perfect" RFLPs, evenly spaced,
with each RFLP so highly polymorphic that it is rarely found
homozygous. Given 65 such RFLPs, defining intervals of size
-52 cM, every region of the genome is within 20% recom-
binationi of an RFLP. Given 150, the intervals are =22 cM,
and every locus is within 10%.

Since some 1000 RFLPs have already been discovered (11,
12), including an increasing number of highly polymorphic
ones, the eventual availability of such maps seems ensured.
(In the interim, we may compensate for uneven spacing and
incomplete polymorphism by increasing the number of
RFLPs, families, or both: several nearby modestly polymor-
phic RFLPs can be thought of as equivalent to a single highly
polymorphic one.)

INTERVAL MAPPING

We begin with a situation appropriate to mapping a dominant
trait by using three-generation pedigrees: grandparents, par-
ents, and n children. In this case, we can study n fully
informative, phase-known meioses, one per child, provided
the trait is fully penetrant. 11

Detecting Linkage: Using Unmapped Markers. Following
Smith (19), it is traditional to consider hypothesis He,,: that
the recombination fraction is 0 between a single marker under
study and a putative linked locus accounting for a fraction a
of occurrences of the trait (with the rest due to an unlinked
locus or a nongenetic cause).
The possible outcomes for the segregation of the trait and

the marker are observing 0, 1, 2,. . ., n crossovers. Assuming
homogeneity (a = 1) and linkage at 6, the probability of i
crossovers isp,, 6(i) = (7) Oi (1 - 0)f-i Under heterogeneity,
the probability is just the weighted average for linkage at 6
and nonlinkage: P,,,,a = ap,,, + (1 - a) Pn,1/2. If Ho,. is the

$Here, as throughout, we assume the Haldane map function, corre-
sponding to no crossover interference. Positive interference, for
example at the Kosambi level, makes interval mapping slightly more
efficient (data not shown).
If penetrance is incomplete, unaffected children are of uncertain
genotype. Thus, they add little to the analysis. In this case, n should
be the number of affected children.

[Note that, given a map function, q, and X determine T'. With
the Haldane function, if = r (1 - T') + T' (1 - 4).1
A single phase-known meiosis results in one offour events:

the allele inherited at L may be coinherited with in-phase
alleles at bothM and N, with probability PMN = (1 - T) (1 -
T'); at Malone with probabilityPM = (1 - T)T'; atN alone with
probability PN = T (1 - T'); at neither with probability po =
eT'. The outcomes for a pedigree with n such phase-known
meioses are identified by the numbers i, j, k, 1 of events of
each type observed. Under homogeneity, the probability of
such an outcome is

pn (i, j, k, 1) = (E, jnk |) PfNPIPNPO

Under heterogeneity, the probability is again the weighted
average p n,0,a = ap',o + (1 - a)p'n,1/2. The expected lod score
and family resources required are computed as before.
The worst case occurs when L is midway between M and

N; if so, call the recombination fraction to either marker 6.
We may profitably rewrite the expected lod score in this case
as

[1]

where y = 02/[02 + (1 - 0)2]. There is a simple interpretation
of Eq. 1: Chromosomes recombinant between M and N
contribute zero expected information; only nonrecombinant
meioses matter. The chance that there will be m such meioses
is (n)41n-m(l - Em. Given such a meiosis, the chance that L
will fail to cosegregate with the flanking markers is y, the
(conditional) probability of a double crossover.

In short, the flanking markers are mathematically equiva-
lent to a "virtual RFLP" at a recombination fraction y 0.
The closer linkage of this virtual RFLP more than offsets the
fact that only nonrecombinant meioses contribute informa-
tion. Table 1 shows the resources needed to map a trait lying
midway between two flanking RFLPs in 22-cM and 52-cM
RFLP linkage maps (ice., at 10% or 20% from the flanking
markers).
95% Certainty of Success. In planning a linkage study, it is

prudent to collect more than just the average number of
families needed to obtain a lod score of 3. Table 1 therefore
shows the number required to ensure a 95% certainty of

**More extensive tables for the case of single unmapped markers
appear in ref. 16. To facilitate comparison, we have employed the
same recombination fractions and thresholds for detecting both
linkage and heterogeneity.
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Table 1. Interval mapping: Numbers of families needed to detect linkage or heterogeneity with and without a map for dominant and
recessive traits

22-cM RFLP map (markers at 10%o) 52-cM RFLP map (markers at 20%o)
Linkage Heterogeneity

Average 95% success Average

Trait n a Sing. Map Sing. Map Sing. Map

Dominant 2 1.0 9 7 18 10 NA NA
0.9 12 9 25 17 368 21
0.7 20 15 45 33 131 5
0.5 38 30 90 69 131 2
0.3 101 79 245 191 228 2
0.1 854 669 2046 1604 1370 1

3 1.0 6 4 12 7 NA NA
0.9 8 6 17 11 130 12
0.7 13 9 30 21 48 3
0.5 23 18 58 43 47 2
0.3 59 44 148 111 76 1
0.1 454 339 1114 835 410 1

4 1.0 5 3 9 5 NA NA
0.9 6 4 13 8 69 8
0.7 9 7 23 16 26 2
0.5 16 12 43 31 25 1
0.3 39 28 104 75 39 1
0.1 275 197 699 503 188 1

Recessive 2 1.0 16 9 33 15 NA NA
0.9 19 12 43 23 1564 41
0.7 32 20 75 44 410 8
0.5 62 39 149 92 359 4
0.3 168 106 405 254 579 2
0.1 1444 905 3445 2165 3360 2

3 1.0 7 4 15 7 NA NA
0.9 8 5 20 10 511 19
0.7 13 8 33 19 115 4
0.5 24 14 62 37 85 2
0.3 57 35 150 91 112 1
0.1 415 247 1042 627 478 1

4 1.0 4 3 9 4 NA NA
0.9 5 3 12 6 137 9
0.7 8 5 21 12 40 2
0.5 13 8 37 22 32 1
0.3 30 18 85 51 42 1
0.1 181 102 494 284 146 1

Linkage Heterogeneity

Average 95% success Average

Sing. Map Sing. Map Sing. Map

18 11 39 20 NA NA
22 14 50 29 2253 92
37 24 87 53 559 16
72 46 171 109 476 7

194 125 466 300 756 4
1672 1070 3986 2558 4355 3

12 7 26 14 NA NA
15 9 34 19 738 51
24 15 58 35 197 10
46 28 113 70 167 4
119 74 295 183 255 3
975 588 2357 1433 1369 2

9 5 19 10 NA NA
11 7 26 15 367 33
18 11 44 26 103 7
33 20 84 51 88 3
83 50 212 128 130 2

643 367 1583 917 651 1

52 22 120 45 NA NA
65 27 150 60 * 320
107 47 252 107 5464 45
208 92 495 216 4111 18
573 252 1362 601 6070 10

5063 2209 * 5251 * 7

21 9 50 19 NA NA
25 11 62 25 6680 134
41 18 101 43 1192 20
76 33 189 83 780 8

196 84 487 213 973 5
1595 655 3861 1611 4334 3

12 5 29 11 NA NA
14 6 36 15 1913 66
23 10 58 26 379 11
41 18 107 48 257 5
101 42 263 115 311 3
742 286 1859 745 1193 2

Sing. = single-marker methods; Map = interval mapping; n = number of children if dominant; n = number of affected children if recessive
(see text); * = >10,000; NA = not applicable.

detecting linkage, should it be present. (The actual lod score
is approximately normally distributed about the Elod with
standard deviation calculable from the distributions given
above.) It is striking to note that, for a homogeneous disease,
a sample large enough to ensure a 95% chance of success
when interval mapping is used affords less than 50% chance
when traditional single-marker methods are used.

Detecting Heterogeneity: Using Unmapped Markers. Ho-
mogeneity is typically tested (10, 19) by comparing the
maximum likelihood of the sample when we allow heteroge-
neity to the maximum likelihood when we insist on homo-
geneity. If the hypothesis He, is correct, the maximum
likelihood allowing for heterogeneity occurs at (6, a), while
the maximum likelihood under homogeneity occurs at some
point (0*, 1). In the case of a dominant trait, it is intuitively
plausible-and simple calculus confirms-that 6* is just the
"apparent" recombination frequency: 6* = Oa + V2(1 - a),

independent of n. Thus, to compare the hypotheses of
heterogeneity and homogeneity, we are interested in the
expected lod score E(pneOa; Pn*,l). The number of families
needed to attain 10:1 odds in favor of Ho,a relative to He*,,
appears in Table 1.tt

Detecting Heterogeneity: Using Interval Mapping. We adopt
a similar approach in the case of mapped markers. Allowing
for heterogeneity, the maximum likelihood occurs at the true
values (r, a). If we insist on homogeneity, however, the
maximum likelihood occurs at the midpoint of the interval-
except if a is very close to 1, in which case the maximum
occurs between the midpoint and the true location. The Elod
is thus E(p', a; p'n,9,i), except for a close to 1 (a > 0.9, in our

ftAs a working rule, odds of 10:1 seem appropriate for "indication"
ofheterogeneity. We would propose a higher threshold for "proof"
of heterogeneity-at least 50:1.

Genetics: Lander and Botstein
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Table 2. Simultaneous search: Number of families needed for simultaneous search of several equally frequent loci causing a

heterogeneous trait, and comparison with nonsimultaneous mapping of individual component loci

22-cM RFLP map (markers at 10%)

2 3 4

52-cM RFLP map (markers at 20%)
n k 1 2 3 4 5

11 11 20 35 30 76 40 135 50 216
2 11 47 102 179 276

11 18 29 72 55 158 88 277 125 428

8 8 12 21 17 42 22 72 27 111
3 8 29 61 104 158

8 12 18 46 32 98 49 169 69 258

6 6 9 15 12 28 15 45 17 68
4 6 21 42 69 103

6 9 13 34 21 69 32 117 44 176

5 5 7 11 9 20 10 32 12 46
5 5 16 31 50 73

5 8 10 26 16 53 23 87 30 129
k

a b
n c

e d Box k, n applies to the situation of a dominant trait caused (equally often) by any of k loci given families with n fully informative
meioses. Clockwise from the top left, the entries are the numbers of families needed on average to obtain 1000:1 odds in favor of the following:
a, the correct set of k loci (as a set), when suspected a priori (ensemble test); b, any one of k component loci, when simultaneous search with
RFLP map is used (specific component test); c, any one of k component loci without simultaneous search, but with RFLP map; d, any one of
k component loci when single unmapped markers are used; e, the correct set of k loci (as a set), when located by simultaneous search (ensemble
test with increased threshold).

cases). The number of families needed to attain 10:1 odds in
favor of the correct hypothesis relative to homogeneity is
given in Table 1, for a locus located at the midpoint.#

Recessive Traits. Most of our analysis is easily adapted to
the situation appropriate for mapping a recessive trait.§§
Since unaffected children are of uncertain genotype, they
contribute little to mapping the trait. So, let n be the number
of affected children in the family. The phase of a recessive
disease allele is usually in doubt, but the phase of the RFLPs
can be determined from the DNA ofgrandparents, unaffected
sibs, or both. Table 1 shows the resources required for
studying a recessive trait of unknown phase, with RFLPs of
known phase.

SIMULTANEOUS SEARCH
Following the entire set of trait-causing loci is potentially
more efficient than following a single locus, as we noted in the
introduction. To study k intervals simultaneously, we can
compare different probability distributions on the Cartesian
product X1 x . . .x Xk ofjoint outcomes, where Xi is the set
of outcomes for the ith interval. The appropriate probability
distributions to use depend on the precise question we wish
to ask. Three come to mind:

Testing a Specific Ensemble of Loci. Suppose that intervals
1, 2, . . ., k are suspected on a priori grounds of each
containing a trait-causing locus. (To concoct an example, if
we were studying familial cancers the intervals might contain
known oncogenes. If an initial study failed to implicate any
single oncogene as the cause, we would then want to test
whether oncogenes as a class were to blame.)

#A 95% certainty of success at proving heterogeneity requires
considerably more families: 3-4 times as many in the case of a
RFLP map and 5-6 times in the case of unmapped markers (data
not shown). This reflects the fact that heterogeneity may masquer-
ade as homogeneity more easily than vice versa.

§§The main differences are (i) even assuming homogeneity, meioses
within a family are not statistically independent and (it) in detecting
heterogeneity, the maximum likelihood value O* must be deter-
mined by numerical approximation.

For simplicity, consider the hypothesis H1,2 ..k: each of
intervals 1, 2, . . ., k contains at its midpoint a trait-causing
locus responsible for 1/k of the occurrences of the trait, and
the alternative hypothesis Ho: none of the intervals are linked
to a trait-causing locus. We refer to comparing these hypoth-
eses as the ensemble test.
The probability distribution on the set ofpossible outcomes

under H1,2. .,k is simply the weighted average of the k
product distributions obtained when we assume that the trait
maps to interval i and is unlinked to the remaining intervals
(for i = 1, 2, . . ., k). Under Ho, it is the product distribution
associated with nonlinkage to all the intervals. The expected
lod scores for the ensemble test are given in Table 2 for the
case of a trait caused by k equally frequent dominantly acting
genes.

Testing a Specific Component Locus. A high lod score on the
ensemble test is an indication that some or all of the loci in
the set are involved. Proving that any particular component
locus is involved and estimating the frequency with which it
is a cause of the trait require studying a richer set of
alternative hypotheses. A complete analysis would continue
by varying the fraction of all cases attributed to each of the
loci (between 0 and 1) and finding a point maximum likelihood
and a confidence region around it. (The mathematics is the
same as in the previous paragraph, although increasingly
efficient algorithms and computing power are required.)
To illustrate what is required to test a specific component

locus, let us compare hypothesis H1,2_ .,k with hypothesis
H1,2,.. ,k-l,k+ -i.e., that the trait is due (equally often) to loci
in intervals 1, 2, . . ., k - 1, and k + 1, where k + 1 is a locus
unlinked to k. (Equally well, k + 1 could refer to a nongenetic
cause-say, a virus-accounting for 1/k of the cases.)
Table 2 shows the number offamilies needed to attain a lod

score of 3 in favor of the former hypothesis, when it is
correct. We refer to this as a specific component test. For
comparison, the table also lists the resources that would be
required to prove linkage to a locus with a = 1/k ifwe do not
use the simultaneous method.

S

2

3

4

S

7 7 12 19 17 39 23 68 29 107
7 30 65 113 174

7 10 17 38 32 83 50 144 72 222

5 5 7 12 10 21 12 33 15 49
5 18 37 62 93

5 7 10 24 18 49 26 82 36 124

4 4 5 8 6 14 8 21 9 29
4 12 24 39 58

4 5 7 17 12 33 17 54 22 80

3 3 4 6 5 10 6 15 6 20
3 9 17 27 39

3 4 6 13 9 25 12 39 15 56

Proc. Natl. Acad. Sci. USA 83 (1986)
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Searching for a Set of Loci. Usually, we will have no a priori
beliefs about where the trait-causing loci will be. In this case,
we may try all sets of k intervals in turn, in the manner just
outlined. The only difference is that the threshold T for
acceptance must be raised to account for an increased
likelihood of false positives.
A simple Bayesian argument suggests an appropriate

threshold. The a priori odds that a gene and a marker will be
linked (at an effectively detectable distance) are about 50:1
against. Roughly, this is why Morton (9) prescribed that the
data from a traditional linkage study must yield a lod of 3, or
1000:1 odds in favor of linkage, to be accepted: so that the a
posteriori odds of linkage are 20:1 in favor. In the case of
simultaneously mapping k loci of similar frequency, a com-
parable approximation is to take the a priori odds against
linkage to a set of k intervals to be (5) 1 against. Hence, we
might take logio [20 (5k)] as a sensible threshold. That is, lod
> 3, 4.4, 5.6, 6.7, and 7.6 for k = 1, 2, 3, 4, and 5,
respectively.15

Using the proposed thresholds, Table 2 shows the number
of families needed to prove that a set of k loci found in this
manner adequately accounts for occurrences of a trait. Such
a finding would be strong evidence that the trait in question
actually is genetic-which for certain disorders would be the
most important discovery. It would also justify more exten-
sive studies to prove or disprove the involvement of each of
the k loci, by using the method above.
An Illustration. Consider a heterogeneous dominant trait

caused (equally often) by mutations at any of three loci and
suppose that we have available a 22-cM RFLP linkage map
and families with n = 3 informative meioses.
With a priori reasons to suspect the correct three loci, we

require 10 families on average to obtain 1000:1 odds for our
guess in the ensemble test. (Without a prior hypothesis, 18
families would be needed to obtain 1000:1 odds in favor of a
triple of loci obtained by searching the data.) Showing that a
particular one of the three loci is in fact involved requires 21
families.
By contrast, showing involvement of a locus with a = 0.33

without simultaneous mapping would require 37 families ifwe
were to use flanking RFLP markers and 49 ifwe were to insist
on using single unmapped markers.

DISCUSSION

The mathematical methods we describe here to exploit the
full information contained in an RFLP map considerably
reduce the number of families needed to study a human trait.
The main conclusions that emerge from the data are as
follows:

(i) Interval mapping is more efficient than using single
markers. With a 52-cM map, one needs about 40% fewer
families to detect linkage to a dominant trait and about 60%
for a recessive trait. With a 22-cM map, the reductions are
about 25% and 40%, respectively. In addition to these savings
in the number of families needed to find the correct region,
fewer DNA probings are required to reject unlinked regions
when an RFLP map is used (data not shown).

(ii) Simultaneous search is more efficient than studying
single loci alone. By exploiting the completeness of the
RFLP map, we require about one-third as many families for
typical tasks as if we used single unmapped markers. (Rel-
ative to using flanked intervals but nonsimultaneous meth-
ods, the savings are twofold.)

(iii) Heterogeneity is far easier to detect by using a map.
Between 1/5th and 1/50th as many families are required for
typical problems. In practice, detecting heterogeneity with-
out an RFLP map may be somewhere between impractical
and impossible. Heterogeneity is so much easier to detect
with interval mapping, because it gives rise to outcomes that
can be rationalized only as rare double crossovers ifwe insist
on homogeneity.
The savings in the number of families needed is not simply

a matter of economics. With genetic markers no longer a
major constraint, finding enough families with multiple af-
fected members will pose the greatest limitation to the study
of human heredity. Reducing these requirements by using
information in a more powerful way may bring some complex
human traits within the realm of molecular analysis.
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