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The advent of complete genetic linkage maps consisting of
codominant DNA markers such as restriction fragment length
polymorphisms (RFLPs) (Botstein et al. 1980) has made feasi-
ble the resolution of multiple Mendelian factors underlying
quantitative genetic differences between strains. In principle,
such dissection of polygenic traits is straightforward: (1) A
backcross or intercross is performed between two strains differ-
ing in a trait of interest; (2) progeny are scored both for the
trait and for codominant markers spaced throughout the ge-
nome; and (3) a correlation is sought between the trait and the
inheritance pattern of one or more markers. When a signifi-
cant correlation is found, the presence of a quantitative frait
locus (QTL) is declared.

In practice, there are a number of methodological problems.
To address these problems, we have recently developed a com-
prehensive approach to QTL mapping (Lander and Botstein
1989).

Detecting QTLs by Interval Mapping Using LOD Scores

The traditional approach to detecting the presence of a QTL
near a marker locus and inferring the phenotypic effects (o and
a+B) of the QTL alleles is to perform linear regression of the
quantitative phenotype on the genotype at the marker locus
(e.g., Soller and Brody 1976). A shortcoming of this approach is
that it tests for the presence of QTLs only exactly at a marker
locus—not in the intervals between markers. As a consequence,
(1) whenever the QTL does not lie exactly at the marker locus,
recombination decreases the apparent phenotypic effect and
thus causes linear regression systematically to underestimate
the phenotypic effect B; (2) since it diminishes the apparent
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phenotypic effect, recombination also increases the number of
progeny needed to detect linkage to a QTL; (3) individuals with
missing genotypic data at a marker locus cannot be used in the
analysis; and (4) although the approach detects the presence of
a QTL in the neighborhood of a marker, it supplies no estimate
of its position.

In order to remedy these problems, we exploit the full power
of a genetic linkage map by generalizing linear regression
along lines commonly used in human genetics (Ott 1985).
Linear regression is a special case of the method of maximum
likelihood, the statistical principle that advocates estimating
parameters by the value that maximizes the probability of the
observed data having occurred. Even when a QTL is at some
distance from a marker locus, one can compute the probability
P, that an individual will show phenotype ¢ as a function of the
allelic effects o and o+B at the QTL; the phenotypic variance o2
not attributable to the QTL; the position 8 of the QTL relative
to the nearest informative markers; and the genotypes at these
marker loci. Specifically,

P¢(0‘sf5,02:9) = Zg pe(g) fa,B,cz(q))

where the summation is taken over all possible genotypes at
the QTL; py(g) is the probability that the genotype is g at the
QTL based on the position of the QTL relative to the markers
and the observed genotype at the markers; and

fa,B,GZ(q))

is the probability that an individual with QTL genotype g will
exhibit phenotype ¢ based on the values of the parameters. For
the entire data set, the likelihood function L(o,B,62,0) is simply
the product of P¢((X,B,02,9) taken over all individuals. At any
given position 8, one can then apply numerical analysis to find
the maximum likelihood estimates (MLEs) of the QTL param-
eters o* B*,6*2, The strength of the evidence for the presence of
a QTL at a given position 0 is provided by the odds ratio.

Odds ratio = L(a*, B*, ¢*2,8) / L(a**, 0, 6**2, 6)
where o** and o**2 are the MLEs under the assumption that

there is no linked QTL (i.e., B = 0). Essentially, the odds ratio
denotes how much more probable it is for the data to have
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arisen if there is a QTL at the given position than if there is no
linked QTL. Following the convention in human genetics (Ott
1985), evidence for linkage is reported in terms of the LOD
score = logy, (odds ratio). The evidence for the presence of a
QTL can be conveniently displayed by a QTL likelihood map,
indicating the LOD score at all points along the length of a
chromosome (Fig. 1). When the LOD score crosses a predeter-
mined threshold T, the presence of a QTL is declared. The ap-
proximate position of the QTL can be represented by, for exam-
ple, a 1.0-LOD support interval, defined as the region within
which the LOD score remains within 1.0 log unit of its maxi-
mum. The support interval is similar to a confidence interval
for the location of the QTL.

Among the advantages of interval mapping over simple
regression are the following: (1) Because the phenotypic effect B
is the MLE for a correctly specified model, it follows from gen-
eral properties of MLEs that it is asymptotically unbiased. (2)
Because flanking markers allow the genotype at QTLs to be in-
ferred more accurately, somewhat fewer progeny are needed.
(3) The use of QTL likelihood maps allows estimation of posi-
tion of a QTL within an appropriate support interval. (4) Indi-
viduals with missing data at a marker are not discarded from
the analysis, since information about QTL genotype can be ex-
tracted from the nearest flanking, informative markers. Al-
though interval mapping is more powerful, it should be noted
that the method reduces to simple linear regression when the
QTL lies exactly at a marker locus (6 = 0) and there are no
missing data: The estimated allelic effects agree with those ob-
tained by regression, and the LOD score is closely related to
the F-statistic used for judging the statistical significance of
regressions.,

One disadvantage of the new method is that standard com-
puter packages for linear regression cannot be used for QTL
mapping. Instead, special purpose computer programs must be
written. Accordingly, we have recently written MAPMAKER-
QTL, a computer program that implements interval mapping
for backcrosses (E.S. Lander and S.E. Lincoln, unpubl.). We are
currently extending this program to the analysis of inter-
crosses.

Appropriate Threshold for Detecting QTLs
Although the traditional approach to QTL mapping allows a
0.05 chance of false positives at any given pointin the genome
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(Soller and Brody 1976), this choice neglects the fact that many
markers are being tested. Indeed, one can show (Lander and
Botstein 1989) that this standard will yield a probability >90%
of at least one false-positive QTL occurring somewhere in the
genome.

To guard against false positives then, how high a LOD score
threshold 7' should be employed? Assuming that there are no
QTLs in a genome, one can show (Lander and Botstein 1989)
that the QTL likelihood map will follow the square of a
stochastic process known as the Orenstein-Uhlenbeck diffusion
(corresponding to a particle diffusing by Brownian motion
while coupled to the origin by a weak Hookean spring). By ap-
plying the large-deviation theory of the Orenstein-Uhlenbeck
diffusion (Leadbetter et al. 1983), one can derive limits on how
high the LOD score might become by chance. For a typical
plant genome, one can show that a LOD score threshold of
about 2.5 is required to keep the chance <5% that a false posi-
tive will occur somewhere in the genome (Lander and Botstein
1989). This threshold corresponds approximately to the 0.001
confidence level for each marker tested.

Application to the Tomato
In collaboration with colleagues, we have recently applied these
methods and computer programs to a genetic dissection of fruit

Figure 1 LOD scores for a hypothetical quantitative trait. The LOD
scores are based on simulated data for 250 backeross progeny in an
organism with 12 chromosomes of 100 ¢M each. For each individual,
crossovers were generated assuming no interference, and genotypes
were recorded at RFLP markers spaced every 20 ¢cM throughout the
genome (indicated by tick marks on the chromosomes below each
graph). The quantitative phenotype for each individual was generated
by summing individual alleles at five QTLs and adding random en-
vironmental normal noise. Alleles at the QTLs had effects 1.5, 1.25,
1.0, 0.75, and 0.50 and were located, respectively, on chromosomes 1,
2, 3, 4, and 5 at (arbitrarily chosen) genetic positions 70, 49, 27, 8, and
30 cM from the left end (indicated by black triangles on the chromo-
somes), and the random noise had s.D. 1. No QTLs were located on
chromosomes 6-12. The dotted line at LOD = 2.4 indicates the re-
quired significance level for a genome of this size. The four largest
QTLs attained this LOD threshold. Gray bars indicate one-log confi-
dence intervals for the position of the QTLs: Outside this region, the
odds ratio has fallen by a factor of 10. Thin lines extending from the
gray bars indicate two-log confidence intervals. MLEs of the phenotyp-
ic effect are indicated to the right of the confidence intervals. Data
were analyzed with MAPMAKER-QTL computer package (S.E. Lin-
coln and E.S. Lander, unpubl.).
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weight, soluble solids concentration, and pH in the tomato (Pat-
erson et al. 1988). Analysis of 237 progeny of an interspecific
backeross in tomato revealed six QTLs affecting fruit weight,
four QTLs affecting soluble solids concentration, and five QTLs
affecting pH. In each case, the QTLs detected accounted for
more than 50% of the observed genetic variance in the back-
Cross.

Number of Progeny Required

Using the traditional approach of linear regression at marker
loci, the number of progeny required to map a QTL is inversely
proportional to the square of the allelic effect of the QTL
(measured in units of environmental standard deviations), ex-
cept when the allelic effect becomes so large that the trait is
qualitative (Soller and Brody 1976). Thus, detection of small
phenotypic effects may require quite large progeny sizes.
Fortunately, various methods can be used to increase the ef-
ficiency of QTL mapping by decreasing the constant of propor-
tionality. In practical cases, (1) interval mapping can decrease
the number of progeny by about 25% by allowing inheritance at
QTL loci to be followed more accurately; (2) selective genotyping
of the progeny with the most extreme phenotypes can decrease
the number of progeny that must be genotyped by about five-
fold by exploiting the fact that the largest expected LOD score
is contributed by the most extreme progeny; (3) progeny testing
can decrease the number of progeny required by reducing “en-
vironmental” noise; and (4) simultaneous search of multiple in-
tervals can decrease the number of progeny required by
decreasing the unexplained genetic variance. Elsewhere
(Lander and Botstein 1989), we describe these methods in more
detail and provide calculations of the number of progeny re-
quired to map QTLs having a given phenotypic effect.

Selection of Strains

If the goal is to find QTLs having a substantial effect on a trait
of interest, it is possible to choose parental strains to maximize
the chance of success (Lander and Botstein 1989). Ideally, one
should select strains in which a large difference in the trait (1)
has resulted from natural or artificial selection in opposite
directions and (2) is principally caused by a small number of
QTLs. Concerning the latter point, one can apply the classic
formula of S. Wright for the number % of effective factors in a
cross (see Wright 1968) to estimate the number of QTLs. Al-
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though this estimate is only accurate when all the QTLs have
equal phenotypic effects, it can be shown that & provides a good
estimate of the number of QTLs that have a large phenotypic
effect (Lander and Botstein 1989).

By combining the methods described above, it is possible to
design and analyze crosses to achieve accurate and efficient
mapping of QTLs.
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Pinpointing the location and effect of specific quantitative trait
loci (QTLs) can result in dramatic gains from selection in the
early generations of a quantitative trait improvement program.
Mapped restriction fragment length polymorphisms (RFLPs)
provide a set of codominant, densely distributed genetic
markers, some of which, by virtue of linkage to a QTL, may dis-
play associations with the genotypic variance of a quantitative
trait. However, there are no standard experimental designs
and statistical analyses for detecting QTLs with RFLPs. Some
factors to consider and a comparison of statistical approaches
follow.

Population Structure

The most important components of a QTL mapping strategy
are the differential between the parents for the trait and the
power of the field design to distinguish the difference between
genetic and environmental effects. Other considerations in-
clude population structure, the numbers of individuals to
sample, and the number of RFLP markers to use. For quantita-
tive traits with relatively few genes (<10), either a simple F,
progeny test with RFLP analysis of the F, or an inbred-
backcross approach (Wehrhahn and Allard 1965) should suf-
fice. For the more challenging traits, development of recom-
binant inbred lines may be necessary (Burr et al. 1988).

The numbers of individuals to sample and the extent of
genomic coverage needed are largely determined by economic
and genetic limitations. The population sizes in the thousands
which theory suggests for QTL mapping (Lebowitz et al. 1986)
are presently impractical and may be unnecessary if the genes
involved have disproportional effects. Moreover, theoretically
good genomic coverage (an RFLP marker every 10 map units)
may not be available in the population in question.
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