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We used cDNA microarrays to assess gene expression profiles in 60 human cancer cell lines used in a drug discov-

ery screen by the National Cancer Institute. Using these data, we linked bioinformatics and chemoinformatics by

correlating gene expression and drug activity patterns in the NCI60 lines. Clustering the cell lines on the basis of

gene expression yielded relationships very different from those obtained by clustering the cell lines on the basis

of their response to drugs. Gene-drug relationships for the clinical agents 5-fluorouracil and L-asparaginase exem-

plify how variations in the transcript levels of particular genes relate to mechanisms of drug sensitivity and resis-

tance. This is the first study to integrate large databases on gene expression and molecular pharmacology.
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Introduction
Gene expression profiles can be assessed for human tumours, but
from the pharmacological perspective, there is a problem: the
associated treatment histories, if any, are generally complex, frag-
mentary and difficult to interpret. Here we describe studies using
cDNA microarrays to assess gene expression profiles in a set of 60
human cancer cell (NCI60) lines that, in contrast to clinical
tumours, have been characterized pharmacologically by treat-
ment with more than 70,000 different agents, one at a time and
independently. These cells are used by the Developmental Thera-
peutics Program (DTP) of the National Cancer Institute (NCI) to
screen potential anticancer drugs1–6. Screening the compounds
for activity also profiles the cells for sensitivity, offering us a
unique opportunity to relate variations in gene expression to the
molecular pharmacology of cancer. The accompanying report by
Ross et al.7 describes how gene expression profiles characterize
patterns of phenotypic variation in the 60 cancer cell types; here
we analysed gene expression patterns from the same experiments
for their relationship to drug sensitivity. Note that the gene
expression patterns are those for untreated cells, and that this
study focuses on sensitivity to therapy rather than on the molec-
ular consequences of therapy. This pharmacogenomic analysis is
analogous to the assessment of molecular markers in the
tumours of untreated patients. Analytical tools and data are
available (http://discover.nci.nih.gov and http://genome-www.
stanford.edu/nci60), as are additional data from the drug screen
(http://dtp.nci.nih.gov).

The NCI60 set includes cell lines derived from cancers of col-
orectal, renal, ovarian, breast, prostate, lung and central ner-
vous system origin, as well as leukaemias and melanomas.

Growth inhibition is assessed from changes in total cellular
protein after 48 hours of drug treatment using a sulphorho-
damine B assay. The endpoint is non-specific, but patterns of
drug activity across the cell lines provide information on
mechanisms of drug action, resistance and modulation8–12.
These patterns have been correlated with molecular structure
descriptors of the tested compounds13,14 and with molecular
characteristics (for example, MDR1 levels and p53 status) of
the test cells8,15–26. Previously, most cell characteristics were
assessed one gene, gene product or molecular pathway at a
time, but we have adopted a more comprehensive approach27

that generates information on large numbers of gene products
simultaneously. We first generated a protein-expression data-
base using two-dimensional gel electrophoresis28. Here, and in
the accompanying paper7, we present the corresponding
mRNA expression database of the cell lines generated using
pin-spotted, PCR-amplified cDNA microarrays on glass
slides29–31.

A schematic view of our overall approach is shown (Fig. 1).
Activity patterns in database A (>70,000 compounds tested
against 60 cell lines) have been correlated with mRNA expres-
sion levels in database Tr (9,703 cDNAs representing ∼ 8,000
unique genes in 60 cell lines). As signposts for interpretation of
the gene expression profiles, we included in the analysis other
molecular characteristics (termed ‘targets’) individually assessed
by various laboratories, as represented in database Ti (40 targets
in 60 cell lines, see http://dtp.nci.nih.gov/docs/dtp_data.html).
But before exploring the drug-gene correlations, it will be neces-
sary to examine gene expression and drug sensitivity relation-
ships separately.
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Results
Cell-cell correlations on the basis of gene expression
profiles (T-matrix)
We applied selective filters to reduce the initial 9,703 gene spots
to a 1,376-gene subset for the present analysis. These were the
genes that showed strong patterns of variation among the cell
lines and had less than or equal to 4 of 60 values excluded on the
basis of visual quality control or low signal.

We performed cluster analyses using a variety of algorithms
and metrics to organize the cell lines on the basis of gene expres-
sion pattern. The lines tended to cluster into groups that reflect
their tissue of origin (Fig. 2a). With average linkage clustering
and a correlation metric, the 1,376 genes, along with 40 individu-
ally assessed targets, yielded 11 distinct cell clusters differing in
average inter-cluster correlation coefficient by more than 0.3.
MDA-MB-435 (derived from the pleural effusion of a patient
with breast cancer) and its Erb/B2 transfectant MDA-N
expressed large numbers of genes characteristic of melanoma and
clustered with the melanomas7.

The MDA-MB435/MDA-N pair provides evidence of the
reproducibility of these expression profiles. Because MDA-N
does not generally express much Erb/B2 under non-selective
growth conditions, the two lines can be considered as repli-
cates cultured separately and processed independently. As
indicated by the cluster tree (Fig. 2a), they are by far the most
similar pair of cell lines. The Pearson correlation coefficient
was 0.97 (with a bootstrap two-tail 95% confidence interval of
0.879–0.998). In contrast, the average correlation over all
pairs (60×59/2=1,740) of lines was 0.30. This modest correla-
tion reflects factors common to expression patterns in tumour
cell lines. The median difference per gene between the two cell
lines over the 1,376 genes was 0.21 log10 units, a factor of 1.62.
To further test the reproducibility of the patterns, RNA sam-

ples from two cell lines (MCF7 breast and
K562 leukaemia) were collected on three dif-
ferent occasions (at different passage num-
bers), then labelled, hybridized and scanned
independently. These replicates (labelled
MCF7 I, II and III, and K562 I, II and III)
clustered side by side7, with approximately
the same degree of similarity as shown by the
MDA-MB435/MDA-N pair.

Cell-cell correlations on the basis 
of drug activity profiles (A-matrix)
From the overall database of more than
70,000 chemical compounds tested, we
selected 1,400 compounds for this analysis
that had been tested at least four times on all
or most of the 60 cell lines. We included most
of the drugs currently in clinical use for can-
cer treatment. The final data set used for cal-
culations (that is, one GI50 value for each
drug-cell pair) included 1.64% sporadic
missing values, 5.92% values censored at the
high-concentration end of the range and
6.86% censored at the low-concentration end.
The mean –logGI50 potency was 5.71 with a
standard deviation of 1.79 and the median
was 5.72 with an interquartile range of
4.36–7.00

We clustered the 60 cell lines using an aver-
age-linkage algorithm and a metric based on
the growth inhibitory activities (GI50) of the

1,400 compounds8 (Fig. 2b). Comparison of Figs 2a and 2b
indicates that the clustering by organ of origin was not as strong
on the basis of activity as it was on the basis of gene expression.
We observed 15 distinct branches at an average inter-cluster
correlation coefficient of more than or equal to 0.3. Only two
cell types tended to cluster on single branches: leukaemia (6/6)
and CNS (5/6) cells. MDA-N and MDA-MB-435 clustered with
three of the melanoma lines (M14, UACC-62 and SK-MEL-5).
Breast cancer lines HS 578T, MDA-MB-231 and BT-549 clus-
tered together, but far from lines T-47D and MCF7, which are
positive for the oestrogen receptor. Ovarian and colon lines
were considerably more heterogeneous in sensitivity to drugs
than in gene expression.

This difference in clustering (Fig. 2a,b) was probably due, at
least in part, to the activity of genes important to drug sensitiv-
ity and resistance. For example, several tumour cell lines known
to express the multi-drug resistance gene ABCB1 (formerly
MDR1) had closely related drug-activity profiles. HCT-15, with
one of the highest levels of ABCB1 expression, is a colon-
derived line that clustered by gene expression pattern with
other colon lines but by activity pattern with NCI/ADR-Res, an
ABCB1-expressing line selected for adriamycin resistance32.
Likewise, ACHN, UO-31 and CAKI1, three renal-cancer cell
lines known to express high levels of ABCB1, clustered on the
same branch (Fig. 2b).

For quantitative comparison of the clusterings (Fig. 2a,b), we
derived a correlation of correlation parameter, r, defined as the
mean Pearson correlation coefficient of the Pearson correlation
coefficients relating all possible pairs of cells in terms of their
response to drugs and in terms of their gene expression. For these
data sets, r was only 0.21. If these clusterings (Fig. 2a,b) had been
identical, r would have been unity; if there had been no relation-
ship at all, r would have been 0.

Fig. 1 Simplified schematic overview of database generation in relation to the NCI drug discovery
program. Each row of the activity database (A) represents the pattern of activity of a particular
compound across the 60 cell lines, and each column represents the pattern of sensitivities of a par-
ticular cell line to the compounds tested. The gene-expression database (Tr) contains fluorescence
hybridization ratio values from two-colour cDNA microarray measurements on the 60 cell lines. The
database of 40 individually assessed molecular targets (Ti) is the product of experiments in many
different laboratories, as compiled at the DTP web site (http://dtp.nci.nih.gov). The union of Tr and
Ti (as well as a protein database not considered here28) constitutes an overall database of molecular
targets for analysis. Modified from ref. 8.
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Relationship of drug-activity patterns 
to mechanism of action
Most of the compounds tested have unknown mechanisms of
action, although their mechanisms can often be inferred from
results obtained with the COMPARE program11,12 or from clus-
tering on the basis of their patterns of activity in the 60 cell
lines8,13,14. For the analysis of mechanisms, we focused on a 118-
drug subset (Table 1) of database A whose mechanisms of action
are putatively understood. Some of these drugs are currently in
routine clinical use; others have undergone clinical trials or are in
late stages of drug development.

We generated an average-linkage dendrogram based on the
activity patterns of the 118 drugs over the 60 cell lines (Fig. 3a).
Five large, coherent clusters corresponded closely to mechanisms
of action: DNA and DNA/RNA antimetabolites, tubulin inhib-
itors, DNA-damaging agents, topoisomerase 1 (Top1) inhibitors
and topoisomerase 2 (Top2) inhibitors. The antimetabolite clus-
ter included nine dihydrofolate reductase (DHFR) inhibitors
(Df). The only outlying compound was ftorafur, a 5-fluorouracil
(5-FU) prodrug that was almost inactive in the two-day growth
inhibition assay (Table 1).

This dendrogram contains information on many drug classes,
but for illustration, we will focus on antimetabolites, antitubulins
and topoisomerase inhibitors. 5-FU appeared with the RNA syn-
thesis inhibitors (Rs) in a cluster next to dihydrofolate reductase
inhibitors. 5-FU is known to act on DNA as well as on RNA. The
fact that it clustered with RNA synthesis inhibitors suggests that
RNA activity is its dominant mechanism of action.

Tubulin inhibitors formed the most coherent cluster. Drugs
inhibiting tubulin monomer polymerization (vinca alkaloids
and colchicines) clustered on one drug branch, and drugs
inhibiting depolymerization (taxanes) on another. Gel-
danamycin and bisantrene were also in the cluster. The presence
of geldanamycin might be due to its capacity to induce G1 cell-
cycle arrest, as has been observed for taxanes. Why bisantrene,

thought to be a Top2 inhibitor33, clustered with the antitubulins
remains unclear, but the grouping did not appear to be due to
experimental noise.

A ‘supercluster’ included both the Top1 and Top2 branches.
The Top1 inhibitor camptothecin (CPT) and all of its derivatives
formed a very tight cluster. These CPTs (refs 34,35) clustered next
to a group of DNA synthesis inhibitors (Ds). This observation
was consistent with the DNA-replication dependence of camp-
tothecin cytotoxicity, which has been proposed to result from
damage to DNA by formation of ‘replication fork encounter
lesions’36. The Top2 inhibitors, except for etoposide and tenipo-
side, bind to DNA, generally by intercalation34,37. In addition to
their action on Top2, they may therefore act on DNA in other
ways. Because most of the DNA-binding Top2 inhibitors clus-
tered together and were in the same cluster as etoposide and teni-
poside, the Top2 activity was probably the dominant mechanism
of action for these compounds (including derivatives of doxoru-
bicin, mitoxantrone and amsacrine). These observations show
how databases of activity in cells can generate new hypotheses
with respect to drug mechanisms of action.

Gene-drug correlations on the basis of gene expression
and drug activity (AT-matrix clustering)
We analysed expression profiles of the 1,376 genes plus 40 indi-
vidually assessed targets in relation to the activity profiles of the
118 drugs with known mechanisms of action (Fig. 3b). The drugs
were clustered on the basis of Pearson correlation coefficients
that related their activity patterns across the 60 cell lines to the
expression patterns of genes over the 60 cell lines. These correla-
tion coefficients were calculated for each combination of a gene
and a drug by taking the (normalized) level of expression of the
gene in each cell line, multiplying it by the corresponding (nor-
malized) sensitivity of the cell to the drug, summing the results
over all of the cell lines and renormalizing. This yielded 1,376 +
40 correlation coefficients (one for each gene and target) for each

Fig. 2 Dendrograms showing average-linkage hier-
archical clustering of human cancer cell lines.
a, Cluster tree of the 60 cell lines based on their
gene expression profiles for 1,376 genes and 40 indi-
vidual targets. All of the colon cancer lines (CO; 7/7),
the CNS lines (CNS; 6/6) and the leukaemias (LE; 6/6)
clustered together. Of eight melanoma lines (ME),
seven clustered together, except the one reported to
lack melanin production (LOX-IMVI; ref. 5). Of eight
renal carcinoma lines (RE), seven clustered together,
as did four of six ovarian lines (OV). Non-small-cell
lung cancer cells (LC) clustered on two different
branches, and those of breast origin (BR) appeared
most heterogeneous. The breast cell lines positive
for the oestrogen receptor, T-47D and MCF7,
appeared together and grouped with the colon
lines, whereas the breast cell lines negative for the
oestrogen receptor, HS578T and BT-549, clustered
with CNS malignancies. NCI/ADR-Res is of unknown
origin (UK). b, Cluster tree for the cells based on
their patterns of sensitivity to 1,400 compounds
tested. The colour of the cell line name indicates its
assigned organ of origin classification. The distance
metric used was (1–Pearson correlation coefficient).
*Two cell lines (MDA MB435 and MDA-N) with the
gene expression and drug sensitivity signatures of
melanotic melanoma, but derived from a pleural
effusion of a patient with breast cancer.

a b
distance (1-r)
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Table 1 • Database of drugs analysed

Mechanism Mean Average no. Mechanism Mean Average no 

of action* Drug NSC no –log GI50 s.d. No. expts lines/expt of action* Drug NSC no –log GI50 s.d. No. expts lines/expt

A2 mitomycin 26980 6.11 0.56 137 42.9 Db cyanomorpholino 357704 10.29 0.32 11 46.1

doxorubicin

A2 porfiromycin 56410 5.43 0.61 13 43.2 Db hycanthone 142982 5.10 0.20 9 31.1

A6 carmustine (BCNU) 409962 4.15 0.22 136 42.5 Db morpholino-adriamycin 354646 7.73 0.32 8 49.0

A6 chlorozotocin 178248 3.21 0.40 10 45.8 Db N-N-dibenzyl-daunomycin 268242 4.83 0.47 15 41.6

A6 clomesone 338947 3.72 0.38 15 43.1 Db pyrazoloacridine 366140 6.56 0.29 15 43.4

A6 lomustine (CCNU) 79037 4.35 0.31 56 38.9 Di 5-6-dihydro-5-azacytidine 264880 4.63 0.75 16 40.0

A6 mitozolamide 353451 3.93 0.31 15 43.0 Di α-2´-deoxythioguanosine 71851 3.80 0.38 15 43.3

A6 PCNU 95466 3.68 0.44 15 42.1 Di azacytidine 102816 6.11 0.29 15 44.2

A6 semustine (MeCCNU) 95441 4.37 0.18 15 39.9 di β-2´-deoxythioguanosine 71261 5.94 0.50 15 44.7

A7 asaley 167780 5.30 0.44 16 38.3 di thioguanine 752 5.91 0.46 135 43.3

A7 busulfan 750 3.22 0.36 4 54.8 Df aminopterin 132483 6.18 1.39 3 44.3

A7 carboplatin 241240 3.88 0.27 59 39.8 Df aminopterin-derivative 134033 6.60 1.23 3 43.0

A7 chlorambucil 3088 4.22 0.40 130 42.8 Df aminopterin-derivative 184692 6.67 1.55 3 47.7

A7 cisplatin 119875 5.38 0.37 127 41.4 Df an-antifol 623017 7.01 1.40 2 39.0

A7 cyclodisone 348948 4.41 0.26 14 44.1 Df an-antifol 633713 8.17 0.80 2 50.5

A7 diaminocyclohexyl-Pt-II 271674 5.51 0.50 16 44.0 Df Baker’s-soluble-antifolate 139105 6.24 1.47 5 50.6

A7 dianhydrogalactitol 132313 4.33 0.51 16 40.4 Df methotrexate 740 6.94 1.28 4 53.2

A7 diaziridinylbenzoquinone 182986 5.50 0.42 52 39.0 Df methotrexate-derivative 174121 8.05 0.87 3 51.0

A7 fluorodopan 73754 3.46 0.23 10 39.4 Df trimetrexate 352122 8.58 1.11 4 50.8

A7 hepsulfam 329680 3.67 0.38 14 43.4 Dr guanazole 1895 2.23 0.24 15 44.1

A7 iproplatin 256927 4.45 0.31 16 40.0 Dr hydroxyurea 32065 3.14 0.42 55 39.9

A7 mechlorethamine 762 5.52 0.57 56 39.9 Dr pyrazoloimidazole 51143 2.59 0.39 15 43.6

A7 melphalan 8806 4.56 0.38 56 38.2 Ds aphidicolin-glycinate 303812 5.02 0.78 14 42.4

A7 piperazine mustard 344007 3.97 0.51 15 42.8 Ds cyclocytidine 145668 4.73 1.37 17 38.4

A7 piperazinedione 135758 6.11 0.57 16 41.6 Ds cytarabine (araC) 63878 4.82 1.49 132 39.7

A7 pipobroman 25154 4.16 0.28 56 38.8 Ds floxuridine (FUdR) 27640 6.39 1.13 4 54.5

A7 spiromustine 172112 3.82 0.29 12 33.2 Ds fluorouracil (5FU) 19893 4.63 0.73 1149 53.6

A7 teroxirone 296934 4.90 0.47 15 43.3 Ds ftorafur 148958 2.67 0.34 4 51.8

A7 tetraplatin 363812 5.91 0.52 13 43.8 Ds thiopurine (6MP) 755 5.31 0.67 134 42.4

A7 thiotepa 6396 4.09 0.46 131 42.8 Rs acivicin 163501 5.50 0.48 16 39.4

A7 triethylenemelamine 9706 5.20 0.47 136 43.3 Rs dichloroallyl-lawsone 126771 4.97 0.50 16 41.9

A7 uracil mustard 34462 4.56 0.51 56 40.1 Rs DUP785 (brequinar) 368390 5.80 1.07 10 42.5

A7 yoshi-864 102627 2.90 0.31 15 44.0 Rs L-alanosine 153353 5.06 0.74 16 39.8

T1 camptothecin 94600 7.40 0.58 9 38.3 Rs N-phosphonoacetyl- 224131 3.35 0.75 15 39.5

L-aspartic-acid

T1 camptothecin,7-Cl 249910 7.42 0.83 5 48.8 Rs pyrazofurin 143095 5.26 1.03 12 43.6

T1 camptothecin,9-MeO 176323 7.10 0.97 4 52.0 TU colchicine 757 7.26 1.17 7 45.9

T1 camptothecin,9-NH2 (RS) 629971 7.36 0.74 5 51.2 TU colchicine-derivative 33410 7.58 0.93 7 47.3

T1 camptothecin,9-NH2 (S) 603071 7.43 0.66 6 49.8 TU dolastatin-10 376128 9.53 0.42 4 47.0

T1 camptothecin,10-OH 107124 7.51 0.56 7 35.7 TU halichondrin B 609395 8.93 0.48 4 47.8

T1 camptothecin,11-formyl (RS) 606172 5.69 0.69 3 50.3 TU maytansine 153858 8.23 0.33 5 52.2

T1 camptothecin,11-HOMe (RS) 606173 5.43 0.60 2 46.5 TU trityl-cysteine 83265 6.01 0.51 15 42.7

T1 camptothecin,20-ester (S) 606497 6.51 0.75 4 50.5 TU vinblastine-sulphate 49842 9.04 1.00 134 39.0

T1 camptothecin,20-ester (S) 606985 7.42 0.79 2 51.5 TU vincristine-sulphate 67574 6.82 0.65 60 37.8

T1 camptothecin,20-ester (S) 610456 6.84 0.74 4 51.5 TU taxol (paclitaxel) 125973 7.35 0.59 14 55.2

T1 camptothecin,20-ester (S) 618939 7.19 0.75 3 51.7 TU taxol analogue 600222 5.65 0.68 2 54.5

T2 amonafide 308847 5.49 0.21 16 39.9 TU taxol analogue 656178 5.66 0.75 2 49.5

T2 amsacrine 249992 6.32 0.70 135 42.5 TU taxol analogue 658831 5.43 0.83 2 50.0

T2 anthrapyrazole-derivative 355644 6.68 0.68 9 48.2 TU taxol analogue 661746 6.86 0.60 2 51.5

T2 bisantrene 337766 6.76 0.67 11 39.4 TU taxol analogue 664402 6.85 0.71 2 49.5

T2 daunorubicin 82151 7.10 0.58 78 45.8 TU taxol analogue 664404 7.80 1.11 2 51.0

T2 deoxydoxorubicin 267469 7.34 0.55 7 49.3 TU taxol analogue 666608 7.00 0.72 2 54.0

T2 doxorubicin 123127 6.84 0.56 1171 54.8 TU taxol analogue 671867 7.59 0.93 2 52.5

T2 etoposide 141540 5.36 0.65 43 37.6 TU taxol analogue 671870 6.11 0.59 2 55.5

T2 menogaril 269148 6.07 0.62 15 43.6 TU taxol analogue 673187 6.43 0.85 2 56.0

T2 mitoxantrone 301739 7.19 0.71 13 40.1 TU taxol analogue 673188 7.30 0.97 2 54.5

T2 oxanthrazole (piroxantrone) 349174 5.83 0.44 14 43.0 P90 geldanamycin 330500 6.26 0.60 12 42.4

T2 teniposide 122819 6.35 0.65 13 42.6 Uk 3-hydropicolinaldehyde- 95678 5.79 0.40 15 43.3

thiosemicarbazone

T2 zorubicin (rubidazone) 164011 6.59 0.49 16 40.6 Uk 5-hydroxypicolinaldehyde- 107392 5.01 0.45 14 43.0

thiosemicarbazone

Pi L-asparaginase 109229 -0.35 0.64 104 40.6 Uk inosine-glycodialdehyde 118994 3.54 0.33 16 38.4

*Alkylating agents: A2, A7, alkylating at N-2, N-7 position of guanine, respectively; A6, alkylating at O-6 position of guanine; T1, topoisomerase I inhibitor; T2, topoisomerase II inhibitor; Db, DNA binder; Di,

DNA incorporation; Df, antifols; Dr, ribonucleotide reductase inhibitor; Ds, DNA synthesis inhibitor; Rs, RNA synthesis inhibitor; Tu, tubulin-active antimitotic agents; Pi, protein synthesis inhibitor; P90, hsp90

binder; Uk, unknown.
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of the 118 drugs. We then clustered the 118 drugs on the basis of
these correlation coefficients.

Comparison of Fig. 3b with Fig. 3a indicates that analysis on
the basis of gene-drug correlation changed the clustering of
many, but not all, mechanistic classes of compounds. The
antimetabolite and alkylating agent clusters changed in ways not
clearly linked to known structural or mechanistic features. The
antitubulin cluster did not change, but the topoisomerase
inhibitors rearranged in a manner that revealed mechanistic dis-
tinctions among subclasses of compounds.

The antimetabolites appeared in five distinct clusters, moder-
ately changed relative to their clustering based on activity alone.
We found the antifols (Df) in a large, coherent branch, which also
included two RNA synthesis inhibitors, DUP785 and dichloroal-
lyl-lawsone. All of the purine analogues (Di and Ds) appeared
together on a small branch. The pyrimidine
analogues, which formed a single branch on
the basis of activities, separated into two
groups (Fig. 3b), one composed of aphidi-
colin-glycinate and floxuridine, and the other,
of cyclocytidine and cytarabine (Ara C).

The alkylating agents separated into sev-
eral clusters. N-7 nitrogen mustards and eth-
ylenimines formed one branch. The
nitrosoureas (carmustin, lomustin, fluoro-
dopan and semustin) formed a tight group
by themselves. The three alkyl alkane sul-
fonates (yoshi-864, hepsulfam and busulfan)
clustered together, but also with pipobroman
and pyrazoloimidazole.

The five most active Top1 inhibitors (CPT,
CPT,7-CL, CPT,9-MeO, CPT,9-NH2(RS) and
CPT,9-NH2(S)), which do not require activa-
tion, clustered together, whereas the prodrugs
(CPT,20-esters and CPT,11-formyl) clustered
in a separate group. One CPT stood out as an
exception: CPT,10-OH. Preliminary evidence
indicates that this compound may be glu-
curonidated (unpublished data).

The Top2 inhibitors clustered in two dis-
tinct groups, one composed of anthracyclines
(deoxydoxorubicin, daunorubicin, zorubicin
and doxorubicin) and teniposide (VM-26),
the second composed of mitoxantrone, oxan-
thrazole and an anthrapyrazole derivative.
The latter clustered next to the bioreductive
compounds porfiromycin and mitomycin,
suggesting that their ability to produce dou-
ble-strand breaks in DNA is a major determi-
nant of the correlation between their activity
and gene expression. Etoposide (VP-16) clus-

tered paradoxically with the alkylating agents, perhaps implying
that drug metabolism rather than mechanism of action is an
important feature of the activity-expression correlation.

AT-matrix clustered image map
The AT-clustered image map (CIM; Fig. 4) summarizes the rela-
tionship between drug activity and gene expression. CIMs offer a
convenient way to visualize patterns of similarity and difference
in large sets of high-dimensional data. We have previously used
CIMs to visualize relationships among drug activities, individual
targets, protein expression patterns and gene expression
patterns8,28,38,39. The algorithm in the form used here has been
described8,38. In this CIM, the cluster tree of drugs (Fig. 3b) is
represented on the y axis, and genes and individually assessed tar-
gets (n=1,376 genes+40 individually assessed targets) are clus-

Fig. 3 Dendrograms showing average-linkage hierar-
chical clustering of 118 ‘mechanism of action’ drugs.
a, Cluster tree of 118 drugs with putatively known
mechanisms of action based on their activity patterns
across the 60 cell lines. b, Cluster tree of the 118 drugs
based on the correlation of their activity patterns with
expression patterns of the genes. The distance metric
used for (a) was 1–r, where r is the Pearson correlation
coefficient. The distance metric used in (b) was the
Euclidean distance between Pearson correlation coeffi-
cients for the gene-drug combinations. The data clus-
tered were –log10(GI50) values, with main effects
removed for both cells and drugs. The distance metric
used was (1–Pearson correlation coefficient). See Table
1 for definitions of mechanism of action abbreviations.

correlation distance (1-r) Euclidian distance on correlation coefficient
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tered on the x axis. Each block of red or blue represents a high
positive or negative correlation between a cluster of genes and a
cluster of drugs. The data and a full-resolution version of the fig-
ure are available (http://discover.nci.nih.gov).

Examples of causally related gene-drug pairs
The antimetabolite 5-FU, commonly used to treat colorectal and
breast cancer, can inhibit both RNA processing and thymidylate
synthesis. Dihydropyrimidine dehydrogenase (DPYD, encoded
by DPYD), the rate-limiting enzyme in uracil and thymidine
catabolism, is also rate-limiting in 5-FU catabolism. High DPYD
levels would be expected to decrease exposure of cells to the
active phosphorylated forms of 5-FU. Consistent with this
hypothesis, we found a highly significant negative correlation
(–0.53) between DPYD expression and 5-FU potency against the
60 cell lines (Fig. 4, inset A). On closer examination, we found
that 14 of 18 cell lines with low expression of DPYD (less than
25% of the reference pool level) are sensitive or highly sensitive to
5-FU. Perhaps not coincidentally, given the clinical use of 5-FU
against colon cancer, all of the colon-derived cell lines (7/7) fall
into that category. DPYD enzyme activity has been assessed40,41,
and the results in clinical materials have been inconsistent41. The
data presented here suggest that further study of DPYD as a clini-
cal marker is warranted.

Certain malignant cells, including those of many acute lym-
phoblastic leukaemias (ALL), lack asparagine synthetase (ASNS,
encoded by ASNS) and therefore depend on exogenous L-
asparagine42. This dependence is exploited by treating ALL and
other lymphoid malignancies with L-asparaginase, which depletes
extracellular L-asparagine43. We found a moderately high nega-
tive correlation (–0.44) between expression of ASNS and L-
asparaginase sensitivity in the 60 cell lines (Fig. 4, inset B). The
two-tailed 95% bootstrap44 confidence interval was –0.593 to
–0.248; for comparison, that calculated from Fisher’s z-transform
was very similar, –0.620 to –0.204. When we stratified the data by
subtracting the mean log values for drug sensitivity and gene
expression within each organ of origin group of cells, the correla-

tion was stronger (–0.55). For the subpanel of leukaemic lines
(Fig. 5), the correlation coefficient was much higher, –0.98 (with a
bootstrap confidence interval of –1.00 to –0.928). The P value,
calculated from 1,000 bootstrap samples for the null hypothesis of
zero correlation, was 0.005. This value is statistically significant
even if a Bonferroni correction is applied. The two ALL lines
(MOLT-4 and CCRF-CEM) expressed the lowest levels of ASNS
mRNA and were the most sensitive to L-asparaginase. K-562, a
chronic myelogenous leukaemia line, had the highest expression
of ASNS and was the least sensitive to L-asparaginase.

There were also suggestive correlations between expression of
ASNS and L-asparaginase sensitivity for the ovarian lines (–0.88;
bootstrap confidence limits –0.231 to –0.987). The correlation
for all cell types, other than leukaemia and ovarian, was –0.32
(confidence interval –0.044 to –0.557). Early clinical trials done
with solid tumours have shown occasional responses to L-
asparaginase in melanoma, chronic granulocytic leukaemia,
lymphosarcoma and reticulum cell sarcoma43, but not in other
tumour types. Because newer polyethylene glycol-modified
forms of L-asparaginase45 appear to show much better pharma-
cokinetic properties and much less immunosuppression than
the native form of the enzyme, our findings support the possible
use of ASNS expression as a marker for clinical decisions regard-
ing L-asparaginase therapy as well as a closer look at the use of L-
asparaginase therapy for solid tumours.

Discussion
We have described the pharmacological implications of gene-
expression profiling studies of the NCI60 cell lines. Because the
gene expression patterns were determined in untreated cells, our
data relates to sensitivity to therapy, rather than to the molecular
consequences of therapy. In that sense, our study is analogous to
an assessment of clinical tumours for markers that predict sensi-
tivity to therapy. Our essential aims were to understand molecu-
lar pharmacology, to aid in the process of drug discovery and to
provide a rationale for selection of therapy on the basis of molec-
ular characteristics of a patient’s tumour.

Fig. 4 CIM relating activity patterns of
118 tested compounds to the expression
patterns of 1,376 genes in the 60 cell
lines. Included, in addition to the gene
expression levels, are data for 40 molec-
ular targets assessed one at a time in the
cells. A red point (high positive Pearson
correlation coefficient) indicates that
the agent tends to be more active (in the
two-day SRB assay) against cell lines that
express more of the gene; a blue point
(high negative correlation) indicates the
opposite tendency. Genes were cluster-
ordered on the basis of their correlations
with drugs (mean-subtracted, average-
linkage clustered with correlation met-
ric); drugs were clustered on the basis of
their correlations with genes (mean-sub-
tracted, average-linkage clustered with
correlation metric). The drug cluster tree
is the same as that in Fig. 3b, which can
be consulted to identify individual
drugs. A larger version of this A.TT clus-
tered correlation (ClusCorr) CIM (with
the drug and gene names and the cluster
trees; refs 8,28,38) is available (http://dis-
cover.nci.nih.gov). Inset A shows a mag-
nified view of the region around the
point (white circle) representing the cor-
relation between DPYD (76) and 5-FU
(25). Inset B is an analogous magnified
view for ASNS (924) and the drug L-
asparaginase (55).
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This approach has several limitations8. First, cell lines differ
from tumour cells, particularly as they have been removed from
their in vivo environment and selected for growth characteristics
in culture. They should therefore be considered as surrogates that
may contain information on the molecular cell biology and mol-
ecular pharmacology of cancer. Second, we generated our activity
database using only one assay end-point, an index of short-term
growth inhibition and cytotoxicity. Third, the relationships
established between drug activities and gene expression levels are
correlative, not causal, and they generate hypotheses that must
now be tested. Fourth, there are only 60 cell lines. Finally, fewer
than 10% of all human genes (although a much larger percentage
of those in any given cell type) are represented on the arrays.

Our analysis of the gene expression profiling and pharmacologi-
cal studies relies conceptually on the pair of database matrices. The
A-matrix expresses the relationship between tested compounds
and the 60 cell types. The T-matrix relates cells to their molecular
characteristics, mRNA expression levels (Tr) and individual targets
(Ti). The inner product of A and T (normalized to produce Pear-
son correlation coefficients8,28,38) yields a set of relationships
between tested compounds and measured gene expression levels.
The gene expression profiles show considerable coherence, in that
cells clustered on the basis of their expression profiles for 1,376
genes and 40 targets tend to sort themselves by organ of origin.
This generalization most clearly holds for the leukaemias,
melanomas and carcinomas of renal, CNS and colon origin.

The activity patterns of 1,400 compounds did not group the
cells as well by organ of origin as did the gene expression profiles.
The reason is clear: an individual gene can have a major impact
on the activities of a large number of drugs but, being just 1 gene
out of 1,376, it can have little effect on clustering by gene expres-
sion pattern. For example, ABCB1 has a large impact on drugs
that it can transport out of the cell8,15,21–24. Because ABCB1 is
expressed at significant levels in at least one cancer cell line from
each of several different organs (that is, renal, breast, colon and
lung), it tends to confound grouping by organ of origin on the
basis of drug-activity profiles. This observation may largely
explain the unexpectedly low correlation (r=0.21) that we found
between the grouping of cells on the basis of gene expression and
that on the basis of drug activity.

Drugs clustered according to their patterns of activity show
generally good correlations with presumed mechanism of action,
but there are exceptions. Bisantrene, for example, was not

expected to cluster with the antitubulin agents. Cyanomorpholin-
odoxorubicin was presumptively classified as a DNA binder, but
clusters with the alkylating agents, suggesting that alkylation by
the cyano-moiety is the dominant mechanism of action.

Exceptions to expected clustering relationships can, in princi-
ple, be explained on the basis of the following: (i) experimental
variability; (ii) the effect of dimensionality reduction, which
occurs during compression of 60-dimensional activity data into
one dimension and results in a loss of information; and (iii)
incorrect or incomplete assignment of mechanism of action.
Drugs with the same primary mechanism of action may have sec-
ondary mechanisms that differ, and they may be susceptible to
different pharmacological factors (for example, efflux mediated
by MDR1). Despite these possibilities, there was a high degree of
coherence for most mechanisms of action, consistent with previ-
ous observations for various drug data sets8–11.

In the ClusCorr CIM, each block of colour represents an asso-
ciation between a cluster of genes and a cluster of drugs. The
block is red if the gene and drug clusters are positively correlated,
blue if the gene-drug correlation is negative, and yellow or green
if there is little correlation. Where the cluster tree for genes or
drugs has a deep fork, the block of colour tends to have a sharp
boundary. Each block of red or blue may represent a causal corre-
lation, an epiphenomenal association or a statistical artefact.
Appropriate randomization studies can often rule out statistical
artefact, but the more difficult distinction to make is that
between epiphenomenon and causal association. This must gen-
erally be done by searching the literature and available databases
for clues, or by carrying out additional experiments. To search
the literature on gene-gene and gene-drug relationships more
rapidly and flexibly, we developed a web-based program, Med-
Miner46 (http://discover.nci.nih.gov). MedMiner uses the Weiz-
mann Institute’s GeneCards and the National Library of
Medicine’s PubMed to extract literature information and then
organize it in a way that reduces five- to tenfold the time required
to explore complex relationships.

By combining genome-wide expression profiling with drug
activity data, we are exploring a large set of possible gene-gene,
gene-drug and drug-drug relationships simultaneously. Our aim
is exploratory: we obtain clues, generate hypotheses and establish
context rather than testing a particular biological hypothesis in
the classical manner27,47. At present, however, we can interpret
only a small proportion of the relationships. The DPYD/5-FU

Fig. 5 Relationship between ASNS expression levels
and chemosensitivity of the NCI cell lines to L-asparag-
inase. The main effects have been removed for both
cells and drugs. Hence, a negative log(GI50) value of 1
for sensitivity indicates a tenfold higher than average
sensitivity of the cell line to the agent. The ASNS level
is plotted as the abundance (log2) of the ASNS tran-
script, relative to its abundance in the reference pool
of 12 cell lines. A value of +2 indicates fourfold higher
expression than in the reference pool. The large cir-
cles indicate leukaemia cell lines. The linear regression
line (correlation coefficient=–0.98; P value<0.01) was
fitted to the leukaemia data.
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and ASNS/L-asparaginase correlations are cases in which we
knew enough to recognize a likely causal nexus (with clinical
implications), and in which the gene expression data provided
considerable added value. The most interesting relationships are
presumably those we cannot yet recognize. To facilitate explo-
ration of this data resource over the coming years, both the analy-
sis tools and data are available (http://discover.nci.nih.gov and
http://genome-www.stanford.edu/nci60).

A final limitation of the study is that pharmacologically inter-
esting behaviours are not always reflected at the transcriptional
level. It will be necessary to assess differences among cells at the
DNA and protein levels as well. An overall aim of this enter-
prise27, then, is to combine the three levels of experiment and
analysis. Toward that end, we have collected DNA and protein in
parallel with the RNA for cross-indexable characterizations with
respect to all three types of molecules (unpublished data).

Methods
Assay for drug activity. The drug profiling protocols of the NCI have been
described1,3,6. Briefly, the cells were grown in 96-well microtitre plates and
exposed to the test compound for 48 h. Growth inhibition, assessed by the
sulphorhodamine B assay for cellular protein, can be expressed in terms of the
quantity –log(GI50), where GI50 is the concentration required to inhibit cell
growth by 50% in comparison with untreated controls. The activity profile of
a compound is composed of 60 such activity values, one for each cell line.

Cell collection and mRNA purification. Briefly, we took seed cultures of
the cell lines from stocks used for ongoing assays in the DTP screen. They
were then passaged once in T-162 flasks and monitored frequently for
degree of confluence. We used RPMI-1640 medium (30 ml for attached
cells; 40 ml for leukaemias) with phenol red, glutamine (2 mM) and 5%
fetal calf serum. For compatibility with the drug-profiling regimen, we
obtained all fetal calf serum from a large batch (BioWhittaker) used by
DTP. No antibiotics were used. One day before collection, the cells were
re-fed with the original amount and composition of medium. We collect-
ed cells at ∼ 80% confluence, as assessed for each flask by phase microscopy
and documented by photomicroscopy for two flasks of each cell type at
each collection. Samples of medium showed no change in pH between re-
feeding and collection, and no colour change in the medium was seen in
any of the flasks. Cells were collected in parallel for RNA, DNA and pro-
tein. For RNA, the interval from incubator to stabilization of the prepara-
tion was kept to <1 min. We purified total RNA using the RNeasy kit (Qia-
gen) according to the manufacturer’s instructions. The RNA was then
quantitated spectrophotometrically and aliquoted for storage at –70 oC.
As needed, poly(A) mRNA was obtained from total RNA using the Oligo-
tex kit (Qiagen). Purified message was routinely quality-controlled on
formaldehyde agarose gels.

cDNA microarrays. We assessed gene expression patterns using microarrays
(Synteni, Inc.; now Incyte, Inc.) consisting of robotically spotted, PCR-ampli-
fied cDNAs on coated glass slides48. The 9,703 DNA elements on the array were
cDNAs from the Washington University/Merck IMAGE set (Research Genet-
ics). The cDNAs on this array included 3,700 named genes, 1,900 human genes
homologous to those of other organisms and 4,104 ESTs of unknown function
but defined chromosome map location. For each hybridization, cDNA synthe-
sized from the mRNA of test cells was labelled by incorporation of Cy5-dNTP
during reverse transcription. We analogously labelled cDNA synthesized from
pooled mRNA of 12 highly diverse cell lines of the 60 by incorporation of Cy3-
dNTP. Cells for the pool were selected to satisfy three criteria: (i) at least one cell
line from each organ of origin; (ii) diversity of growth rates; and (iii) diversity
in terms of protein expression pattern, based on prior two-dimensional gel
studies28. Inclusion of all 60 cell types would have insured non-zero values for
all mRNA transcripts expressed in any of the cells, but would have been logisti-
cally difficult and hard to replicate at a later time. Cells included in the pool
were leukaemias HL-60(TB) and K-562; non-small cell lung cancer NCI-
H226; colon cancer COLO 205; CNS cancer SNB-19; melanoma LOX-IMVI;
ovarian cancers OVCAR-3 and OVCAR–4; renal cancer CAKI-1; prostate can-
cer PC-3; and breast cancers MCF7 and HS 578T.

Genes. We selected genes for analysis from the 9,704 on the array on the
basis of three layers of quality control. First, we visually examined the indi-
vidual chips. Values from spots contaminated with dust or fluorescent
specks were treated as missing. Second, we examined the intensities and
ratio for each individual spot. Values from spots with raw intensity in both
red and green channels lower than 1.5 times the local background were
considered as missing. If the spot was 1.5-fold higher than the local back-
ground for one channel (for example, red), but not the other (for example,
green), the difference between raw intensity and background was thresh-
olded at 100 intensity units (∼ 1/10 of background) for the low channel.
Third, genes were included if and only if 4 or fewer measurements were
excluded out of the 60 and 4 or more cell lines had red-green ratios >2.6 or
<0.38. These filters resulted in selection of 1,376 genes.

As of December 1999, the DTP web site listed data for 41 published targets
assessed individually in all or most of the 60 cell lines by laboratories at the NIH
or elsewhere. Of these, 40 targets were added (in log transformation, with
appropriate thresholding) to the gene expression data to provide signposts for
the analysis. The forty-first was omitted because it had too many missing values.

The drug database. The >70,000 DTP-tested chemical compounds were
winnowed to a final database of 1,400 for analysis by applying a series of fil-
ters based on the number of times a compound had been tested, the num-
ber of missing values and the number of cell lines for which the GI50 value
fell within the range of concentrations tested. The smaller set of 118 includ-
ed so-called “mechanism of action” drugs9,10,38 and 10 additional Taxol
analogues. The number of independent experiments conducted by DTP
per compound ranged from 2 to 1,176 for the set of 118, with a median of
15 and an interquartile range of 3 to 23. The mean number of cell lines test-
ed and yielding GI50 values that passed quality control for a given experi-
ment on a given compound was 46.5. To arrive at GI50 values for use in
analysis, we calculated medians of the individual values obtained in experi-
ments performed over the best concentration range.

Data analysis. Most statistical analyses were carried out using the S-Plus
statistical package (StatSci Division, MathSoft). S-Plus scripts were writ-
ten to generate suitably formatted HTML documents, which were invoked
by a CGI program written in C and subsequently delivered to the analysts’
web browsers. The graphics generated and tools of analysis used are avail-
able (http://discover.nci.nih.gov). For exploratory analyses, we used a
variety of clustering algorithms, metrics, data transformations and visual-
ization techniques. We settled on average linkage clustering with a correla-
tion metric. Except where otherwise indicated, all P values and confidence
intervals quoted are two-tail 95%, calculated by Efron’s bootstrap re-sam-
pling method46 without small-sample correction. To calculate the degree
of similarity between cell clustering on the basis of drugs and on the basis
of genes, we derived a ‘correlation of correlation’ parameter r as follows:
let Uij denote the correlation of cells i and j (for i and j from 1 to n) based
on their drug activities, and let Vij denote the correlation of cells i and j
based on their gene expression. For example, if Xdi denotes the activity of
drug d (for d from 1 to D) against cell i, then the Pearson correlation coef-
ficient for cells i and j based on drug activity is given by the formula

and similarly for Vij. The Pearson correlation of Uij and Vij gives a measure
of the similarity in the distributions of drug activity and gene expression.
The formula is given by

where the sums are over all distinct pairs of cells i and j, there being
n(n–1)/2 such pairs.
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Because the L-asparaginase/ASNS pair was initially selected on the basis
of its pharmaceutical significance, not on the basis of its correlation, the
statistical multiple comparisons problem does not involve all of the hun-
dreds of thousands of correlations being assessed in this study. Rather, it
can more accurately be framed in terms of the following two questions.
(i) What is the probability of obtaining a correlation coefficient so far from
zero if the null hypothesis of zero correlation holds for the cancer cell class
that is clinically treated with L-asparaginase (that is, leukaemia)? In this
case, the null hypothesis can be rejected on the basis of the P value of 0.005.
(ii) What is the probability of obtaining a correlation coefficient so far from
zero for at least 1 of the 8 cancer cell types in the panel if the null hypothe-
sis of zero correlation holds for all 8 cell types (excluding prostate, for
which there are only two cell lines)? Applying the Bonferroni correction
(which assumes independence and is, in fact, too stringent) to the latter
case, the critical value would be approximately 0.05/8=0.006. That number
is slightly higher than the value of 0.005 obtained, so, formally speaking,
the null hypothesis of zero correlation could be rejected despite the Bonfer-
roni correction. No small-sample correction has been made in the boot-
strap algorithm, however, and the result should, in any case, be considered
as indicative, not definitive. Note that experimental noise would tend to
decrease the magnitude of the observed correlation, not increase it, and
would make it harder to reject the null hypothesis of zero correlation.

Clustered image map (CIM). Calculations to derive visualizable relation-
ships between drugs and targets in the form of a “clustered correlation”

CIM were performed as described8,28,38. In brief, we normalized each ele-
ment in the activity matrix (A) by subtracting its row-wise mean and divid-
ing by its row-wise standard deviation; normalized each element in the tar-
get matrix (T) by subtracting its row-wise mean and dividing by its row-
wise standard deviation; took the inner product of the normalized A and
the transpose of the normalized T matrix; and divided each element in the
resulting matrix by N–1, where N is 60 minus the number of components
for which one or both vectors had a missing value. The resulting matrix
(A.TT), where TT is the transpose of T, contains Pearson correlation coeffi-
cients relating a pattern of drug activities to a pattern of target expression.
A program for making clustered correlation CIMs (as well as other types of
CIMs) is available (http://discover.nci.nih.gov).
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