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In summary, we have shown that GSK-3b function is required for
the NF-kB-mediated anti-apoptotic response to TNF-a. Our data
also show that GSK-3a and -b have distinct biological roles, as the
former is unable to compensate for the loss of the latter. M

Methods
Cytoplasmic and nuclear lysates were prepared as described16. Immunoblotting was
carried out with I-kB-a (polyclonal, New England Biolabs), p65 NF-kB (polyclonal, Santa
Cruz Biotechnology) and GSK-3 (mouse monoclonal, Upstate Biotechnology) antibodies.

Apoptosis assays

Where indicated, TNF-a-treated cells (10 ng ml-1 h) were collected, mixed with 4 mg ml-1

acridine orange (®nal concentration) and assessed by ¯uorescence microscopy. Cell
survival following TNF-a treatment was determined by negative staining with trypan blue
and expressed normalized to untreated controls. All experiments were repeated at least
three times, and the data are shown as the mean 6 standard error. In situ apoptosis was
detected by TUNEL assay according to the manufacturer's instructions (Boehringer
Mannheim), or by another fragmented DNA end-labelling protocol30. For b-galactosidase
viability assays, two days after transfection with pCMV-b-galactosidase plus either
pCDNA3-HA-GSK-3b or control plasmid, cells were treated as indicated and analysed.

EMSA

The kB-binding activities of embryonic ®broblasts incubated with lithium or potassium
(30 mM, 4 h) and murine TNF-a (100 ng ml-1, 30 min), as indicated, were compared by
EMSA. Nuclear lysates were prepared and EMSAs were performed as described17. For
oligonucleotide competition assays, equivalent amounts of nuclear extract protein (3 mg)
were preincubated for 5 min with a 200-fold excess of either NF-kB-speci®c oligonu-
cleotide probe containing two tandem NF-kB-binding sites (59-ATCAGGGACTTTCCGC
TGGGGACTTTCCG-39 and 59-CGGAAAGTCCCCAGCGGAAAGTCCCTGAT-39) or
mutant NF-kB oligonucleotides (59-GATCACTCACTTTCCGCTTGCTCACTTTCCAG-
39 and 59-CTGGAAAGTGAGCAAGCGCAAAGTGAGTGATC-39) before addition of the
radiolabelled NF-kB using the oligonucleotides 59-TTCTAGTGATTTGCATTCGACA-39
and 59-TGTCGAATGCAAATCACTAGAA-39.

Luciferase assay

Embryonic ®broblast cells were transfected with plasmids expressing ELAM-luciferase and
b-galactosidase. Transfected cells were incubated in the presence of 30 ng ml-1 TNF-a or
IL-1b for 6 h. Luciferase assays were carried out using the Promega assay kit and a Berthold
luminometer. Activity was normalized to b-galactosidase activity and plotted as the mean
6 standard deviation of triplicates from a representative experiment. To examine the effect
of lithium treatment on NF-kB-mediated gene transcription, HEK293 epithelial cells were
preincubated overnight with 30 mM lithium or potassium before being stimulated with 10
or 20 ng ml-1 TNF-a. Luciferase values were normalized to the unstimulated potassium
and lithium controls.
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There are about 800 genes in Saccharomyces cerevisiae whose
transcription is cell-cycle regulated1,2. Some of these form clusters
of co-regulated genes1. The `CLB2' cluster contains 33 genes whose
transcription peaks early in mitosis, including CLB1, CLB2, SWI5,
ACE2, CDC5, CDC20 and other genes important for mitosis1. Here
we ®nd that the genes in this cluster lose their cell cycle regulation
in a mutant that lacks two forkhead transcription factors, Fkh1
and Fkh2. Fkh2 protein is associated with the promoters of CLB2,

² Present address: Mayo Clinic, Department of Immunology, Rochester, Minnesota 55906, USA.
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SWI5 and other genes of the cluster. These results indicate that
Fkh proteins are transcription factors for the CLB2 cluster. The
fkh1 fkh2 mutant also displays aberrant regulation of the `SIC1'
cluster1, whose member genes are expressed in the M±G1 interval
and are involved in mitotic exit. This aberrant regulation may be
due to aberrant expression of the transcription factors Swi5 and
Ace2, which are members of the CLB2 cluster and controllers of
the SIC1 cluster. Thus, a cascade of transcription factors operates
late in the cell cycle. Finally, the fkh1 fkh2 mutant displays a
constitutive pseudohyphal morphology, indicating that Fkh1 and
Fkh2 may help control the switch to this mode of growth.

We determined the binding site for Fkh1 protein (Fig. 1). This site
was similar to a motif found in front of the genes of the CLB2
cluster1 (Fig. 1). This motif is the binding site for a transcription
factor called `SFF' (SWI ®ve factor)3±5, whose components have not
been identi®ed. Furthermore, transcription of FKH1 and FKH2 is
regulated according to the cell cycle, with peak transcription during
S phase1, consistent with the idea that Fkh1 and Fkh2 might be
involved in cell-cycle regulation.

To see whether Fkh1 and Fkh2 regulate genes of the CLB2 cluster,
we constructed fkh1 and fkh2 single and double mutants. Neither
single mutant had an obvious phenotype, but the double mutant
had unusual cell morphology (see below). We examined expression
of cell-cycle regulated genes in the fkh1 fkh2 mutant. CLN2, whose
expression is independent of SFF, displayed its normal late-G1 peak
in these cells (Fig. 2). However, SWI5, an SFF-dependent gene4 and a
member of the CLB2 cluster, failed to oscillate, but instead was
constitutively expressed in moderate amounts (Figs 2 and 3).
Interestingly, during a-factor arrest, SWI5 was expressed in the
fkh1 fkh2 mutant but not in wild-type cells (not shown), indicating
that Fkh1 and Fkh2 can repress as well as activate transcription.

We used microarrays for a more comprehensive analysis (Fig. 3).
To examine cell cycle regulation, we compared synchronous Dfkh1
Dfkh2 cells to asynchronous Dfkh1 Dfkh2 cells. Although most genes
were regulated normally in the fkh1 fkh2 mutant after release from
an a-factor block, the genes of the CLB2 cluster were an exception,
and largely lost their cell cycle regulation. Of the 33 genes in the
CLB2 cluster, 20 showed little or no oscillation in the fkh1 fkh2
mutant (ACE2, ALK1, BUD3, BUD4, CDC5, CLB1, CLB2, HST3,
KIP2, IQG1, MOB1, MYO1, SWI5, YCL012w, YIL158w, YLR190w,
YML033w, YML034w, YNL058c, YPL141c), though they clearly
oscillated in the wild type. Seven genes (APC1, BUD8, NUM1,
TEM1, YCL063w, YLR057w and YLR084c) had little or no oscillation
in the fkh1 fkh2 mutant, but also had less than 2.5-fold oscillation in
wild-type cells after release from an a-factor block, so their regula-
tion by Fkh1 and Fkh2 is dif®cult to ascertain. The remaining six
genes (CDC20, CHS2, HOF1, YJL051w, YML119w and YPR156c)
retained a residual oscillation in the fkh1 fkh2 mutant. Although the
fkh1 fkh2 mutations eliminated oscillation of the transcripts of the
CLB2 cluster, moderate, constitutive expression remained for each
gene (Fig. 3). Consistent with this, moderate, constitutive CLB2

expression is seen when the SFF sites are removed from the CLB2
promoter5,6. The constitutive expression of the genes in the
CLB2 cluster explains why the fkh1 fkh2 mutant is viable.

Misregulation of genes in the CLB2 cluster might result in
secondary effects. In particular, the CLB2 cluster encodes the cell
cycle transcription factors Swi5 and Ace2. These related factors7,8 are
responsible for the M±G1 phase transcription of genes in the
downstream `SIC1' cluster1,8±10. Indeed, genes in the SIC1 cluster
were also misregulated in the fkh1 fkh2 mutant (Fig. 3). Some genes
had reduced expression (for example, EGT2, CTS1, PCL9); some
genes had reduced oscillation (for example, SIC1, YDL117w and
PRY3); and some genes had alterations in both time and amount of
expression (for example, YGL028c). In the mutant, SIC1 was
expressed at the a-factor block, perhaps because SWI5 is now
expressed at the a-factor block. The diversity of responses may
re¯ect different degrees of dependence on the amount of Swi5/Ace2.

Outside the CLB2 and SIC2 clusters, there were only a few genes
whose regulation during the cell cycle was affected by the fkh1 fkh2
mutation (for example, BUD9, CLN3, YMR215w, KIN3 and
YOR315w). Several genes had an overall expression that increased
(for example, YGP1) or decreased (for example, TAO3, YGL028c,
YHR143w, SPS4, SUN4) in asynchronous fkh1 fkh2 cells compared
with wild-type cells (that is, these quantitative changes did not
necessarily involve altered cell-cycle periodicity). Some of the
downregulated genes are involved in cell-wall metabolism or cell
separation, and this may help explain the cell separation defect of
fkh1 fkh2 cells (see below). The genes showing the largest quanti-
tative effects in asynchronous cells did not include any genes from
the CLB2 cluster (see Supplementary Information and our web site:
genome-www.stanford.edu/fkh), suggesting that these quantitative
effects were indirect.

To distinguish direct and indirect effects, and show that Fkh
proteins regulate the CLB2 cluster directly, we performed formal-
dehyde crosslinking immunoprecipitation11. After immunoprecipi-
tation of Fkh2 and associated chromatin, polymerase chain reaction
(PCR) was used to test for various DNA fragments. Promoter
fragments containing the SFF motifs from four genes of the CLB2
cluster (SWI5, CLB2, YJL051w and HST3) were assayed. All four
were speci®cally present in the Fkh2 immunoprecipitate (Fig. 4a±c).

Figure 1 The Fkh1 binding site. The Fkh1 site was determined using a GST±Fkh1 fusion

and a modi®ed oligonucleotide selection and ampli®cation binding protocol (SAAB)25.

Nineteen oligonucleotides from the ®fth cycle of SAAB were sequenced. The number of

occurrences of each nucleotide at each position is shown. Published SFF is from ref. 1.

SFF/FKH site is our best current estimate of the site. R, A or G; Y, T or C; W, A or T.

Figure 2 Regulation of SWI5 during the cell cycle is lost in an fkh1 fkh2 mutant. Wild-type

(WT) or mutant cells were synchronized in G1 using a-factor, then released. SWI5, CLN2,

and ACT1 (loading control) messenger RNAs were assayed using northern blots. Time

after release is shown (0Ð180 min). Alpha, a-factor arrested cells; Log, asynchronous

cells.
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In addition, we examined full-length promoters from three genes of
the SIC1 cluster, EGT2, SIC1 and PCL9. No fragment from the
intergenic region upstream of these genes was speci®cally present in
the immunoprecipitate (Fig. 4c±g, and data not shown for PCL9).
Thus, Fkh2 directly regulates SWI5, CLB2, YJL051w and HST3, but
only indirectly regulates EGT2, SIC1 and PCL9.

To summarize, almost all of the genes in the CLB2 cluster mostly
or completely cease to oscillate in the fkh1 fkh2 mutant, though they
continue to be expressed. Many genes in the SIC1 cluster lose their
normal regulation qualitatively and/or quantitatively, presumably
because the transcription factors controlling them are encoded in
the CLB2 cluster. Relatively few other genes are affected. We
conclude that Fkh1 and Fkh2 are responsible for the regulation of
the CLB2 cluster and probably encode components of SFF, because
the Fkh1 binding site matches the SFF site found in the promoters of
the CLB2 cluster, because SFF-regulated genes fail to oscillate in the
fkh1 fkh2 mutant, and because Fkh2 is actually present at four of
these promoters. Our best estimate of the site consensus is
RWAAAYAW. The slight residual periodic expression of some
CLB2 cluster genes in the fkh1 fkh2 mutant may be due to two
related forkhead transcription factors, Hcm1 and Fhl1 (ref. 12).

The fkh1 fkh2 mutants had striking morphological phenotypes:

Figure 3 Microarray analysis of fkh1 fkh2 mutants. Wild-type (left column) or isogenic

fkh1 fkh2 cells (GZ45-17a) (second column) were synchronized with a-factor, released,

and sampled (left to right) through two cell cycles. Relative mRNA abundance was

analysed by competitive microarray hybridization1. Red, gene induction compared to

asynchronous cells; green, repression; dynamic range is 16-fold. Representative genes

from ®ve clusters are shown. For a-factor experiments, synchronous wild-type cells were

compared to asynchronous wild-type cells, and synchronous mutant cells were compared

to asynchronous mutant cells, thus showing the effect of the mutations on oscillations in

gene expression over the cell cycle. The `Dfkh1, Dfkh2' column compares asynchronous

fkh1 fkh2 cells to asynchronous wild-type cells, and shows the effect of the mutations on

overall expression. The `Dhcm1' column compares asynchronous hcm1 (a third fork-

head-related gene) mutant cells to asynchronous wild-type cells. The bottom row shows

the most upregulated gene in fkh1 fkh2 mutants, YGP1 (up 12-fold), and the most

downregulated gene, YIL129C (down 30-fold). See Supplementary Information and our

Web site (genome-www.stanford.edu/fkh) for complete data.

Figure 4 Fkh2 is at the promoters of SWI5, CLB2 and YJL051w, but not at EGT2 or SIC1.

PCR fragments ampli®ed from anti-Fkh2-3xHA immunoprecipitation or other chromatin

fractions are shown after gel electrophoresis and ethidium bromide staining. WCE, whole

cell extract; FKH2±3´HA Sup, supernatant from the immunoprecipitation of the

haemagglutinin (HA)-tagged strain; FKH2±3´HA Ppt., material eluted from the

immunoprecipitation of the HA-tagged strain; Untagged Ppt., material eluted from the

immunoprecipitation of the untagged control strain; FKH2±3´HA Mk. Ppt., material

eluted from the mock immunoprecipitation (no antibody) of the HA-tagged strain; CLB2,

SWI5 and YJL051w, fragments from the promoters of CLB2 cluster genes; TRA1 and

ACC1, negative control fragments; EGT2 (three different fragments) and SIC1, fragments

encompassing the complete upstream regions of EGT2 and SIC1 genes of the SIC1

cluster.
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mother and daughter cells remained attached; mother and daughter
cells budded synchronously (by time-lapse photography, not
shown); cells were elongated (Fig. 5a); and cells were somewhat
invasive on agar plates (Fig. 5b). These phenotypes occurred in
W303 haploids and diploids in nutrient-rich solid or liquid media.
The morphology is characteristic of pseudohyphal growth, which
usually occurs after nitrogen starvation on solid medium and allows
yeast to forage more ef®ciently13±15. However, pseudohyphal growth
does not usually occur in strain W303. The phenotypes were not
seen in fkh1 hcm1 or fkh2 hcm1 mutants, nor were they intensi®ed in
a fkh1 fkh2 hcm1 triple mutant (Fig. 5a). It is consistent with our
®ndings that clb2 mutants themselves are weakly pseudohyphal16, as
transcription of the CLB2 cluster is activated by Clb2/Cdc28
kinase activity17. A Schizosaccharomyces pombe mutant defective in
a forkhead transcription factor, sep1, also has a cell separation
defect18.

Unlike strain W303, strain S1278b undertakes robust pseudohy-
phal growth when starved for nitrogen on solid media13. The fkh1
fkh2 mutations allowed pseudohyphal and invasive growth of
S1278b even in rich media (Fig. 5a, b).

It is possible that the fkh mutants are only mimicking pseudo-
hyphal growth (that is, they may be pseudo-pseudohyphal). How-
ever, overexpression of FKH2 suppressed the normal ability of
S1278b-related cells to become pseudohyphal upon nitrogen star-
vation (Fig. 5c), indicating that Fkh2 may be a part of the normal
pathway for this adaptation.

Deletion of STE12 dramatically reduces (but does not abolish)
normal pseudohyphal growth14. In contrast, a ste12 fkh1 fkh2 triple
mutant is pseudohyphal, like the fkh1 fkh2 double mutant (Fig. 5a).
Thus, the Fkh proteins either act downstream of Ste12, or in a
parallel pathway. However, overexpression of FKH2 did not reduce
the residual capacity of an ste12 mutant for pseudohyphal growth
(Fig. 5d), arguing that the Fkh proteins are not in a parallel pathway.
In summary, Ste12 may control pseudohyphal growth in part by
repressing Fkh expression or activity, which in turn may repress
some aspects of pseudohyphal growth (Fig. 5e).

The pseudohyphal phenotypes can be explained in terms of genes

in the CLB2 and SIC1 clusters. The CLB2 cluster contains BUD3, 4
and 8, which affect budding pattern. The synchronous budding and
elongated cells might be caused by a delay in mitosis, and many
genes important for mitosis are in the CLB2 and SIC1 clusters.
Finally, the lack of mother±daughter separation could be due to the
decreased expression of the cell separation genes EGT2 (ref. 9) and
CTS1 (ref. 19) of the SIC1 cluster, and perhaps also to the decreased
expression of YIL129c, YGL028c, YHR143w, SPS4, PRY3 and SUN4.

FKH1 and FKH2 encode proteins homologous to the forkhead
transcription factor of Drosophila20. This family of transcription
factors is highly conserved, with at least 20 homologues in
humans21,22. Here, we have shown that a pair of forkhead transcrip-
tion factors is responsible for the M-phase transcription of a cluster
of genes. As transcription of vertebrate B-type cyclins is also
regulated during the cell cycle23,24, it will be interesting to see
whether any aspects of the regulatory system have been conserved.
Our study of the FKH genes also helps understanding of the yeast
cell cycleÐthe Fkh transcription factors are expressed in S phase to
help to induce a set of genes in mitosis; this mitotic cluster includes
the Swi5 and Ace2 transcription factors which then induce yet
another cluster of genes during the M±G1 interval.

In developmental processes controlled by forkhead transcription
factors in other species, it is not clear what the ultimate target genes
may be; here, we have identi®ed a number of direct and indirect
targets. Similar microarray studies in other organisms may de®ne
the ®nal target genes of other developmental pathways. M

Methods
Determination of the FKH1 binding site

The FKH1 site was determined using a modi®ed selection and ampli®cation binding
protocol (SAAB)25. See Supplementary Information and our Web site
(genome-www.stanford.edu/fkh).

Analysis of gene expression

Strain W303a (MATa ade2 leu2 his3 trp1 ura3 ssd1-d can1-100) and isogenic GZY45-17a
MATa bar1 fkh1 fkh2 cells were synchronized using a-factor. Samples were taken every 15
min after release from a-factor. RNA was analysed by northern blotting using probes for

Figure 5 Phenotype of Dfkh1 Dfkh2 cells. a, Morphology. Yeast strains were grown in

rich medium to mid-log phase, concentrated by centrifugation, sonicated and

photographed. Scale bar: 10 mm. b, Invasiveness. Cells were patched onto rich medium

and grown for two days (S1278b background) or three days (W303 background) at 30 8C.

The ®rst column shows the patches before washing, the second column shows the

patches after washing with a stream of water. c, Extra copies of FKH2 suppress formation

of ®laments and invasion into the agar. A diploid strain from the S1278b background

(L5366) was transformed with a multicopy control plasmid (pGF29) or a multicopy plasmid

containing FKH2 (pGF53), and grown on SLAD plates26 at 30 8C. Top, colonies before

washing; bottom, colonies after washing. Scale bars: 50 mm. d, As in c except the diploid

from the S1278b background carried a homozygous deletion Dste12/Dste12.
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SWI5, CLN2 and ACT1. Microarray analysis was as described1. Microarray data for a-
factor block-release of wild-type cells is from ref. 1. Strain GZY45-17a showed twofold
increases in expression for many genes on chromosome 16, indicating that this strain
could be disomic.

Crosslinking chromatin immunoprecipitations

Chromatin immunoprecipitations were carried out as described11 with minor modi®ca-
tions. Exact methods and oligos are described in Supplementary Information and at our
Web site (genome-www.stanford.edu/fkh).
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Many cell-cycle-speci®c events are supported by stage-speci®c
gene expression. In budding yeast, at least three different nuclear
factors seem to cooperate in the periodic activation of G2/M-
speci®c genes1±3. Here we show, by using chromatin immuno-
precipitation polymerase chain reaction assays, that a positive
regulator, Ndd1, becomes associated with G2/M promoter regions
in manner that depends on the stage in cell cycle. Its recruitment
depends on a permanent protein±DNA complex consisting of the
MADS box protein, Mcm1, and a recently identi®ed partner Fkh2,
a forkhead/winged helix related transcription factor4,5. The leth-
ality of Ndd1 depletion is suppressed by fkh2 null mutations,
which indicates that Fkh2 may also have a negative regulatory role
in the transcription of G2/M-induced RNAs. We conclude that
Ndd1±Fkh2 interactions may be the transcriptionally important
process targeted by Cdk activity.

From the initiation of S phase to the completion of anaphase,
yeast cells need to maintain a high level of B-type cyclin (Clb)-
mediated Cdk1 activity. If Clb kinase activity decreases too much
during this interval, then re-replication may occur before
chromosome separation and cytokinesis6. One mechanism that
ensures continuous production of the main mitotic cyclin, Clb2,
is based on a positive feedback loop between the Clb2/Cdk1 kinase
and the transcriptional activation system of CLB2 (ref. 7). In G1 and
early S phase, the messenger RNA level of this gene is low because of
the lack of promoter activity2,3. Re-accumulation of the mRNA
during later stages of the cell cycle depends largely on Clb-
dependent kinase activity. The machinery for CLB2 activation
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Figure 1 Ndd1 binds speci®cally to Mcm1-dependent G2/M-speci®c promoters.

Chromatin immunoprecipitation PCR (ChIP) assays with STE2, SWI5 and CLB2 using

tagged versions of Mcm1 and Ndd1. Lanes 1±3, dilution series of the whole-cell extract

control (WCE); lanes 4 and 5, immunoprecipitation with anti-Myc antibody; lanes 6 and 7,

immunoprecipitation with HA-speci®c antibody. Arrows emphasize the signals created by

the SWI5 and CLB2 primer pairs. Gene names specify other promoter regions ampli®ed by

the control primer pairs. Top and bottom panels show results of independent experiments.
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