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ABSTRACT
Motivation: Gene expression experiments provide a fast
and systematic way to identify disease markers relevant
to clinical care. In this study, we address the problem
of robust identification of differentially expressed genes
from microarray data. Differentially expressed genes, or
discriminator genes, are genes with significantly different
expression in two user-defined groups of microarray
experiments. We compare three model-free approaches:
(1) nonparametric t-test, (2) Wilcoxon (or Mann–Whitney)
rank sum test, and (3) a heuristic method based on
high Pearson correlation to a perfectly differentiating gene
(‘ideal discriminator method’). We systematically assess
the performance of each method based on simulated and
biological data under varying noise levels and p-value
cutoffs.
Results: All methods exhibit very low false positive rates
and identify a large fraction of the differentially expressed
genes in simulated data sets with noise level similar to
that of actual data. Overall, the rank sum test appears
most conservative, which may be advantageous when
the computationally identified genes need to be tested
biologically. However, if a more inclusive list of markers is
desired, a higher p-value cutoff or the nonparametric t-test
may be appropriate. When applied to data from lung tumor
and lymphoma data sets, the methods identify biologically
relevant differentially expressed genes that allow clear
separation of groups in question. Thus the methods
described and evaluated here provide a convenient and
robust way to identify differentially expressed genes for
further biological and clinical analysis.
Availability: By request from the authors.
Contact: russ.altman@stanford.edu

BACKGROUND
DNA microarray technology allows for the monitoring of
expression levels of thousands of genes under a variety

∗To whom correspondence should be addressed.

of conditions. A major question in microarray studies is
how to select genes associated with specific physiological
states or clinical parameters–genes whose expression in
a tumor sample is related to a specific tumor subtype or
patient survival. In a clinical context, such differentially
expressed genes are often referred to as clinical markers.
Clinical markers can form the basis for diagnostic tests,
particularly if they can be assayed in reliable and inexpen-
sive ways. Identification of clinical markers may lead to
improved diagnosis and treatment guidance, early disease
detection, and clinical outcomes prediction.

While routine clinical use of microarrays is still not
feasible, they may provide methods for fast, accurate, and
systematic identification of biomedical markers from the
data generated by gene expression experiments. Clinicians
can then assay the expression of one or a few such
markers by immunohistochemistry or quantitative PCR
(Kim, 2001). Moreover, relating specific groups of genes
with specific biological correlates is a critical step toward
understanding the underlying molecular mechanisms and
identifying novel therapeutic targets.

The most commonly used tools for identification of dif-
ferentially expressed genes include qualitative observation
(usually following some form of clustering of expression
patterns), heuristic rules, and model-based probabilistic
analysis. The simplest heuristic is setting cutoffs for
gene expression changes over a background expression
level. In an early gene expression study, Iyer et al. (1999)
sought genes whose expression changed by a factor of
2.20 or more in at least two of the experiments. DeRisi et
al. (1997) looked for 2-fold induction of gene expression
compared to baseline. Xiong et al. (2001) identified
indicator genes based on classification errors by feature
wrappers (including linear discriminant analysis, logistic
regression, and support vector machines). Although this
approach is not based on specific data modeling assump-
tions, the results are affected by assumptions behind the
specific classification methods used for scoring.
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The probabilistic approaches applied to microarray
analysis include a t-test based on a Bayesian estimate
of variance among experiment replicates with a Gaussian
model for expression measurements (Long et al., 2001)
and a hierarchical Bayesian modeling framework with
Gaussian gene-independent models combined with a t-test
(Baldi and Long, 2001). Newton et al. (2001) identified
differentially expressed genes by posterior odds of change
based on a hierarchical Gamma–Gamma–Bernoulli model
for expression ratios. All these methods either use an
arbitrarily selected cutoff or probabilistic inference based
on a specific data model.

As microarray data is often noisy and not normally dis-
tributed (Hunter et al., 2001), it is challenging to con-
struct a statistical data model applicable to all microar-
ray data sets. In this context, nonparametric methods that
do not assume a specific distribution of data are attrac-
tive. Previous studies suggest that using rank-transformed
data in microarray analysis is advantageous (Raychaud-
huri et al., 2000; Tsodikov et al., 2002). Dudoit et al.
(2002a). used a nonparametric t-test with family-wise er-
ror rate corrected p-values, while the significance anal-
ysis of microarrays (SAM) method used a statistic sim-
ilar to the t-test and permutations of repeated measure-
ments to estimate the false discovery rate of differentially
expressed genes (Tusher et al., 2001). Pan (2002) used a
mixture modeling approach that estimates the distribution
of t-statistic-type scores using normal mixture models and
compared it with two parametric approaches, including a
regular t-test. Park et al. (2001) scored genes based on
the number of permutations of expression values required
to make that gene into a perfectly discriminating marker,
where all high expression values belong to one group of
experiments and all low expression values belong to the
other group. Significance of scores was assessed based on
column permutations of the data set and comparison of
the distribution of scores from permuted data to that of the
original data (Park et al., 2001). Other investigators used
similar approaches, but looked for genes with high cor-
relation to an idealized expression pattern that perfectly
discriminates between two groups; they determined statis-
tical significance from repeating the analysis on permuted
data (Galitski et al., 1999; Golub et al., 1999).

Although several groups presented evaluations of clas-
sification methods (Ben-Dor et al., 2000; Dudoit et al.,
2002b), no systematic comparative studies of model-free
methods that identify differentiator genes have been
published. In this paper, we compare three model-free
approaches: (1) a nonparametric t-test, (2) a rank sum
test, and (3) a heuristic method based on high Pearson
correlation to a perfectly differentiating gene, which
we will refer to as the ideal discriminator method. We
chose these methods to compare the power of model-free
probabilistic reasoning (nonparametric t-test and rank

sum test) with heuristic-based inference. We evaluate the
performance of these methods on generated expression
data as well as on real biological data sets.

METHODS
Experimental methods
We implemented and evaluated three methods for model-
free identification of differentially expressed genes in
microarray analysis: a nonparametric t-test, a Wilcoxon
rank sum test, and a heuristic idealized discriminator
method. The evaluation included applications to both sim-
ulated data and real biological data. By using simulated
data, we could first evaluate the methods on data sets
with known differentiator genes in the context of different
noise levels. The simulated data were generated to create
plausible distributions of microarray expression values
while not perfectly matching any particular data set. From
qualitative comparisons of distribution histograms and
Quantile–Quantile plots of several biological data sets
(Alizadeh et al., 2000; Garber et al., 2001; Gasch et
al., 2000), we found that normally generated data with
uniform noise generated from uniform distribution in the
range of U(−0.01, 0.01) to U(−0.1, 0.1) approximated
the true distributions reasonably well. Such an approxi-
mate fit to biological data is similar to the differences in
data distributions between real microarray experiments.

To test the methods, we generated ten simulated data
sets (5000 genes by 40 experiments each) at each of
the six noise levels (U(−0.01, 0.01), U(−0.05, 0.05),
U(−0.1,0.1), U(−0.5,0.5), U(−0.75,0.75), U(−1.0,1.0)).
Increasing noise levels in the data sets allowed us to test
robustness of the methods on very noisy data. Each
data set included twenty predictor genes (markers),
whose values were generated from two different normal
distributions: group 1 (20 experiments) and group 2
(20 experiments). The rest of the genes, for which all
values were generated from one normal distribution per
gene, were considered nonpredictors. The means of each
normal distribution were generated from a random normal
distribution with a mean of 0 and standard deviation
of 0.25 for nonpredictors and standard deviation of 0.5
for predictors. Each of the methods was then applied to
each simulated data set, and true positive rate (TPR) and
false positive rate (FPR) were calculated according to the
following formulae.

TPR = number of predictors identified

total number of predictors

TPR = number of nonpredictors identified

total number of nonpredictors

Nonparametric t-test
The t-statistic is well suited to finding differentially ex-
pressed genes because it allows selection of an expression
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pattern that has maximal difference in mean level of ex-
pression between the two groups and minimal variation
of expression within each group. Although the t-test as-
sumes normal distribution of samples within each group,
we make the procedure nonparametric by estimating p-
values from permuted data sets (random column permuta-
tions). We can calculate the t-statistic from the permuted
data set (t jperm) for each gene j and count how many times
it exceeds the true t statistic for that gene (t jobs ). In this
study, we perform 50 000 permutations for each data set.
We correct the p-values for multiple testing by using the
Bonferroni correction.

group 1: n1 samples, with average expression X1

group 2: n2 samples, with average expression X2

t-statistic: t = (X1 − X2)

SX1−X2

SX1−X2
=

√
s2

1

n1
+ s2

2

n2

Pj = count(t jperm > t jobs)

count(permutations)
PjBonferroni = min(m × p j , 1),

where m = number of genes.

Wilcoxon rank sum test
Wilcoxon rank sum test is a nonparametric test for equality
of means of two samples that are nonnormal. Since
it operates on rank-transformed data, it appears to be
a robust choice for microarray data, which are often
nonnormal and contain outliers. RST first ranks gene
expression values for each gene across all experiments,
and then tests for equality of means of the two ranked
samples. For data sets where both n1 and n2 exceed
8, normal approximation of the p-values can be used
(Walpole and Myers, 1993). The p-values are corrected
for multiple testing by Bonferroni correction.

group 1: n1 samples group 2: n2 samples(n2 > n1)

w1 :
∑

rankssample1

u1 : w1 − n1 × (n1 + 1)/2

meanu1 = n1 × n2/2

varu1 = n1 × n2 × (n1 + n2 + 1)/12

z = (u1 − meanu1)/
√

varu1

z ∈ N (0, 1) when n1 > 8

Ideal discriminator method
In this method, we define an ideal discriminator as
a theoretical gene that is maximally expressed in all
group 1 samples and minimally expressed in all group 2
samples. The method selects genes that have the highest
Pearson correlation to the ideal discriminator and assesses
significance by comparing Pearson correlation score of
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Fig. 1. Effect of the choice of the p-value cutoff on the performance
of the methods. Noise level is at 0.01 (biological data sets examined
showed noise level in the range 0.01–0.1). (a) Effect of the p-value
cutoff on the true positive rate for all three tests. (b) Effect of p-value
cutoff on false positive rate for all tests.

gene j for true data to the best Pearson correlation
score from randomly permuted data (50 000 column
permutations).

p jperm =
count(max

i
(ρiperm) > ρ jobs)

count(permutations)

RESULTS AND DISCUSSION
Performance on simulated data
We evaluated performance of the nonparametric t-test (T),
rank sum test (RST), and the ideal discriminator method
(ID) on the simulated data sets, with controlled level of
noise and with known discriminator genes, allowing us
to compute the true positive rate (TPR) and false positive
rate (FPR). We considered changes in TPR and FPR in
response to varying amounts of noise, different p-value
cutoffs, and decreasing sample size.

The performance of a method depends on the p-value
cutoff below which genes are considered differentially
expressed. Ideally, a method will exhibit high TPR and
low FPR over a range of p-value cutoffs. When we
examine the relationship between TPR and the p-value
cutoff (Bonferroni) for data sets with noise level of
U(−0.01, 0.01), we find that for all of the methods the
slope of the curves is relatively high for p ≤ 0.1
(Figure 1a). In fact, all methods achieve TPR ≥ 0.88
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Effect of noise level on the TPR 
(p-value cutoff at 0.1)
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Fig. 2. Effect of noise level in the data set on TPR at p-value
cutoff of 0.1. Note that biological data sets we examined showed
noise level in the range 0.01–0.1. The error bars presented are one
standard deviation based on 10 simulated data sets at each noise
level.

for p ≥ 0.1 at noise level of 0.01. The maximal TPR
of 0.905 is achieved by the T and ID tests when a p-
value cutoff of 0.5 is used, while the maximum TPR for
RST is 0.895 at the same p-value cutoff. Similar results
are observed for higher noise levels (for example TPR >

0.83 for p ≥ 0.1 at noise level of 0.1), although a lower
maximal TPR is achieved by each test. Thus, the T and
ID tests appear superior to the RST in terms of sensitivity
over all p-value cutoffs. However, when we consider FPR,
the RST exhibits the lowest FPR over all p-value cutoffs
(Figure 1b). At p-value cutoff of 0.5, the RST incorrectly
identifies only 2 genes as predictors, whereas T and ID
mistakenly call 7 and 8 genes, respectively. All tests make
little incorrect identification, and the RST appears to be
most conservative.

Although the noise level definitely has a significant ef-
fect on the performance of the tests, the methods are ro-
bust to noise in the range between U(−0.01, 0.01) and
U(−0.1, 0.1) which is most similar to real data (Figure 2).
Even with extremely high noise (U(−1.0, 1.0)), all meth-
ods still identify some of the predictor genes (TPR > 0.1),
and the FPR remains low for the RST and ID tests (FPR
< 4 × 10−5). The T test shows a higher FPR. The FPR is
under 8 × 10−5 for all tests at every noise level.

While larger sample size for both groups enhances
the methods performance with respect to the TPR, the
more sensitive T and ID tests correctly identify more
predictors than the more conservative RST. However, the
differences are not very large (a maximum of 0.7 TPR
difference between RST and ID) and manifest themselves
only at very small sample size (12 samples in one group;
Figure 3). With noise level of 0.1 and p-value cutoff of
0.1, all of the methods have FPR of 0.

Overall, the RST exhibits lower true positive and
false positive rates over most noise levels and p-value
cutoffs, and is thus the more conservative or specific

Effect of sample size on the TPR 
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Fig. 3. Effect of sample size on TPR at p-value cutoff of 0.1
and noise level of 0.1. Note that biological data sets we examined
showed noise level in the range 0.01–0.1.

test (at the price of somewhat lower sensitivity). When
considering the problem of marker identification, it may
be beneficial to use a more conservative measure, so as
to have higher confidence in genes that are then pursued
biologically in a process that may require significant
resources. Furthermore, the RST does not require multiple
permutation iterations and thus is not computationally
intensive. Thus for most data sets the rank sum test is
the most appropriate first choice for marker identification.
However, if a higher-sensitivity test is necessary, the
nonparametric t-test is appropriate—or the use of a less
stringent p-value cutoff. For both the RST and T test, a p-
value cutoff of 0.1 appears to present the best compromise
between sensitivity and false positive rate.

Performance on biological data
A thorough comparative evaluation of marker identi-
fication methods on biological data is challenging due
to the difficulty of defining a gold standard. Recently,
microarray data sets with experimental validation of select
markers have been reported, and the public dissemination
of such data sets would provide an opportunity for reliable
of marker selection methods (Gerhold et al., 2001; Islam
et al., 2002; Mayanil et al., 2001; Rajeevan et al., 2001).
However, we can obtain some insight into the relative
utility of methods for identifying differentially expressed
genes by examining their performance on simple biologi-
cal data sets. For example, we can cluster data sets using
only marker genes and assess their ability to separate
groups of interest. In addition, we can approximately
evaluate the level of method’s performance by examining
the biological function of differentially expressed genes
selected by the method.

We applied all three methods to a data set comprised
of normal lung and squamous cell lung tumor specimens.
In order to concentrate on a relatively simple biological
problem to assess the performance of our methods, we
sought genes specific to squamous lung tumors (15 arrays)
compared to normal lung (8 arrays). We used the p-value
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BRCA1 breast cancer 1 
BUB1B budding uninhibited by benzimidazoles 
C20orf1 chromosome 20 open reading frame 1 
CCNE1 cyclin E1 
CDC45L CDC45 homolog 
CDC6 CDC6 homolog 
CDKN3 cyclin-dependent kinase inhibitor 3 
CENPF centromere protein F  
CKAP2 cytoskeleton associated protein 2 
CKS1 CDC28 protein kinase 1 
CNAP1 chromosome condensation-related SMC-associated protein 1 
DJ616B8.3 hypothetical protein dJ616B8.3 
E2IG4 hypothetical protein, estradiol-induced 
EIF4A2 **eukaryotic translation initiation factor 4A, isoform 2 
EST Hs.339665 R22949 
EST Hs.118338 R25481  
EST Hs.118338 W85843  
FEN1 flap structure-specific endonuclease 1 
FLJ10540 hypothetical protein FLJ10540 
FLJ14502 TRAF4 associated factor 1 
FLJ22009 hypothetical protein FLJ22009  
FOXM1 forkhead box M1 
HELLS helicase, lymphoid-specific 
Homo sapiens cDNA FLJ14365 fis 
Homo sapiens, Similar to RIKEN cDNA 2610036L13 gene 
KIAA0101 KIAA0101 gene product 
KPNA2 karyopherin alpha 2  
LOC51053 geminin  
MAD2L1 MAD2-like 1 
MCM2 minichromosome maintenance deficient 2 
MCM4 
MCM5 
MCM6 minichromosome maintenance deficient 6 
MSH2 mutS (E. coli) homolog 2 
NUF2R hypothetical protein NUF2R 
PCNA proliferating cell nuclear antigen 
PLK polo (Drosophia)-like kinase 
PTTG1 pituitary tumor-transforming 1 
RAD51 RAD51 (S. cerevisiae) homolog 
RANBP1 RAN binding protein 1 
RFC4 replication factor C (activator 1) 4 
RRM2 ribonucleotide reductase M2 polypeptide 
SHMT2 serine hydroxymethyltransferase 2 (mitochondrial) 
TMPO thymopoietin 
TOP2A topoisomerase (DNA) II alpha* 
TRIP13 thyroid hormone receptor interactor 13 
TROAP trophinin associated protein (tastin) 
UBE2C ubiquitin-conjugating enzyme E2C 
DSG2 desmoglein 2 
DSP desmoplakin (DPI, DPII)* 
KRT17 keratin 17* 
ADE2H1 multifunctional polypeptide 
BMP7 bone morphogenetic protein 7 (osteogenic protein 1)* 
IGFBP3 insulin-like growth factor binding protein 3 
MYBL2 v-myb avian myeloblastosis viral oncogene homolog-like 2 
PFN2 profilin 2 
PLAU plasminogen activator, urokinase 
PRAME preferentially expressed antigen in melanoma 
TFAP2C transcription factor AP-2 gamma 
TK1 thymidine kinase 1 
UMPK uridine monophosphate kinase 
ZIC2 Zic family member 2 
CCT4 chaperonin containing TCP1, subunit 4 (delta)* 
CCT5 chaperonin containing TCP1, subunit 5 (epsilon) 
ERO1L ERO1 (S. cerevisiae)-like 
GGH gamma-glutamyl hydrolase 
GMPS guanine monphosphate synthetase 
GSS glutathione synthetase 
LALP1 lysosomal apyrase-like protein 1 
MGC4308 hypothetical protein MGC4308 
MRPL3 mitochondrial ribosomal protein L3 
MRPS12 mitochondrial ribosomal protein S12 
NUDT1 nudix (nucleoside diphosphate linked moiety X)-type motif 1 
PRKDC protein kinase, DNA-activated, catalytic polypeptide 
RPA40 RNA polymerase I subunit 
SLC16A1 solute carrier family 16 (monocarboxylic acid transporters), member 1 
SLC2A1 solute carrier family 2 (facilitated glucose transporter), member 1 
SNRPB small nuclear ribonucleoprotein polypeptides B and B1 
SORD sorbitol dehydrogenase 
WASF1 WAS protein family, member 1 

Proliferation 
related genes 

Squamous 
markers 

Genes reported 
overexpressed in 

some tumors 

Genes with  
other functions 

Fig. 4. Markers strongly expressed in squamous lung tumors versus normal lung tissue. (a) Hierarchical clustering of squamous lung tumors
and normal tissues based on 91 clones chosen by all three methods. Different lengths of branches in the hierarchical clustering tree correspond
to distances between samples (longer branches mean less similarity). (b) Marker genes and their functions based on literature. Functional
categories were identified based on literature references in Medline (at least 1 paper report). The symbol ‘∗’ identifies genes for which two
different clones were selected by all three methods.
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cutoff of 0.1, chosen according to our simulated data
experiments described above. The rank sum test identified
92 markers, the smallest number of all three methods.
Of those, 91 were identified by all three methods; they
corresponded to 86 distinct genes. The ID method reported
301 clones as good differentiators, whereas the T test
found 202 markers. Hierarchical clustering of the data set
based on the 91 differentiator clones identified by all three
methods yielded clear and robust separation of normal
samples from squamous tumors (Figure 4).

Of the 86 distinct genes identified as good markers
for squamous tumors versus normal lung samples, 59 are
known cell-cycle regulated genes (Whitfield et al., 2002)
or genes known to be strongly expressed in tumors. In
addition, the list included desmoplakin, keratin 17, and
desmoglein 2—genes known to be strongly expressed
in extensively keratinized squamous lung tumors (Blobel
et al., 1984; Harada et al., 1996; Yang et al., 1995).
Two other known squamous tumor markers, keratin 5
and tumor protein p63 (Blobel et al., 1984; Kaufmann et
al., 2001), were selected by the t-test and ID methods,
but not by the more conservative RST method, probably
because both of these markers are poorly expressed in two
of the 15 squamous samples studied. The RST list also
included 18 genes and 6 ESTs that have no documented
evidence of cell cycle regulation or role in oncogenesis.
Thus, the majority of the markers for squamous tumors
versus normal lung tissue identified by the RST have been
experimentally identified as cellular proliferation genes or
markers of squamous differentiation.

To address a more challenging biological problem, we
re-examined the study of diffuse large B-cell lymphoma
(DLBCL) by Alizadeh et al. (2000). In this work, the
authors defined two molecularly distinct subtypes of
DLBCL, corresponding to the originating cell type of
the tumor (Alizadeh et al., 2000). Germinal center B-
like DLBCL expresses genes normally seen in germinal
center B cells, while activated B-like DLBCL strongly
expresses genes that are induced during in vitro activation
of peripheral blood cells. We applied the RST method to
the lymphoma data set†, and identified 72 clones (70 of
which are unique sequences) that are good discriminators
between activated B-like DLBCL and germinal center B-
like DLBCL (Figure 5). Of the genes we identified, 57
are in common with the list of over 350 clones identified
by Alizadeh et al. (2000) from observation based on
hierarchical clustering as selectively expressed in GC
B-like DLBCL and activated B-like DLBCL. Among
the genes identified by the RST and discussed in the
Alizadeh study are known markers of germinal center

† Lymphoma data set was obtained from http://llmpp.nih.gov/lymphoma/
data/figure1/. DLBCL subtypes were defined as in Figure 1B of the Alizadeh
et al. paper (Alizadeh et al., 2000).

differentiation, including CD10, BCL-6 and A-myb. Other
genes in common with the Alizadeh study are genes that
can be altered by translocations in lymphoid malignancies:
BCL-7A, LMO2 (TTG-2/RBTN2), and IRF4 (Alizadeh
et al., 2000). Among the 13 genes not reported as
differentiators in the Alizadeh et al. (2000) study are
leukemia viral BMI-1 oncogene, MCL1 myeloid cell
differentiation protein, and cyclin H (Figure 5).

When we hierarchically clustered the DLBCL samples
based only on the expression profiles of the 72 clones iden-
tified by RST, the two major branches of the hierarchical
tree appear identical to the GC B-like versus activated B-
like lymphoma distinction presented in the Alizadeh et al.
(2000) study (Figure 5). Thus, the smaller subset of genes
identified statistically by the RST appears sufficient to dis-
tinguish the two DLBCL subclasses.

CONCLUSIONS
All the methods exhibit very low false positive ratse (FPR)
and identify a large fraction of the discriminator genes in
the simulated data sets with noise level similar to that of
the real biological data. With increasing noise level, the
FPR remains low, although the true positive rate (TPR)
decreases. However, even in very noisy data sets some
markers were correctly identified (nonzero TPR) by all
methods. At noise levels close to those of real data, the p-
value cutoff of 0.1 appears to provide the best compromise
between false positive and true positive rates for all tests.

Overall, the rank sum test proved to be the most
conservative method (lower FPR and TPR). In a situation
where the most reliable list of markers is desirable, the
best approach may be to examine the intersection of
genes identified by all three methods, or by the more
conservative rank sum test and t-test. The results of several
methods may also be combined via a voting scheme with
voting weights parameterized based on particular problem
specifications and individual preferences. For example, a
conservative voting scheme would give the greatest weight
to any gene that passed all three tests but would also
reward genes that passed the more conservative rank sum
test with very low p-values more than those genes that
passed only the ideal discriminator method. Our results
on two real biological data sets indicate that the methods
described here provide a robust way to select genes
whose differential expression between groups of samples
warrants further biological and clinical analysis.
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BCL-6 
BCL-7A 
BMI-1 
CBF/PEBP2aA1/AML1 
CD10 
Cyclin D2 
Cyclin H 
Deoxycytidylate deaminase 
DNA (cytosine-5-)-methyltransferase 
FLICE-like inhibitory protein long form (I-FLICE) 
FMR2 (Fragile X mental retardation 2) 
IRF-4 
JAW1 lymphoid-restricted membrane protein 
JNK3 Stress-activated protein kinase 
MCL1 myeloid cell differentiation protein 
myb-related gene A (A-myb) 
PKU-beta  
Potassium voltage-gated channel shaker-related mem 3 
PRK putative serine/threonine protein kinase 
PTP-1B phosphotyrosyl-protein phosphatase 
RPD3L1 homologue of yeast RPD3 TF 
SLAP src-like adapter protein 
T-cell protein-tyrosine phosphatase 
TdT terminal deoxynucleotide transferase 
TTG-2/Rhombotin-2 
zinc finger protein 42 MZF-1 

Fig. 5. Genes differentially expressed in germinal center B-like DLBCL versus activated B-like DLBCL based on the data from Alizadeh et
al. (2000) study. (a) Hierarchical clustering of lymphoma samples from based on 72 clones identified by the rank sum test with 0.1 p-value
cutoff. Different lengths of branches in the hierarchical clustering tree correspond to distances between samples (longer branches mean less
similarity). (b) Named genes identified in the 72 clone set. Only named genes are listed, and genes not previously reported in Alizadeh et al.
(2000) study as discriminators are marked in blue.

1460



Nonparametric identification methods for differentially expressed genes

by a Howard Hughes Medical Institute Predoctoral
Fellowship and a Stanford Graduate Fellowship. RBA
is supported by NIH-GM61374, NIH-LM06244, NSF
DBI-9600637, SUN Microsystems and a grant from the
Burroughs-Wellcome Foundation.

REFERENCES
Alizadeh,A.A., Eisen,M.B., Davis,R.E., Ma,C., Lossos,I.S.,

Rosenwald,A., Boldrick,J.C., Sabet,H., Tran,T., Yu,X. et al.
(2000) Distinct types of diffuse large B-cell lymphoma identified
by gene expression profiling. Nature, 403, 503–511.

Baldi,P. and Long,A.D. (2001) A Bayesian framework for the
analysis of microarray expression data: regularized t-test and
statistical inferences of gene changes. Bioinformatics, 17, 509–
519.

Ben-Dor,A., Bruhn,L., Friedman,N., Nachman,I., Schummer,M.
and Yakhini,Z. (2000) Tissue classification with gene expression
profiles. J. Comput. Biol., 7, 559–583.

Blobel,G.A., Moll,R., Franke,W.W. and Vogt-Moykopf,I. (1984)
Cytokeratins in normal lung and lung carcinomas. I. Adeno-
carcinomas, squamous cell carcinomas and cultured cell lines.
Virchows Arch. B Cell Pathol. Incl. Mol. Pathol., 45, 407–429.

DeRisi,J.L., Iyer,V.R. and Brown,P.O. (1997) Exploring the
metabolic and genetic control of gene expression on a genomic
scale. Science, 278, 680–686.

Dudoit,S., Fridlyand,J. and Speed,T.P. (2002a) Comparison of
discrimination methods for the classification of tumors using
gene expression data. J. Amer. Stat. Assoc., in press.

Dudoit,S., Yang,Y.H., Speed,T.P. and Gallow,M.J. (2002b) Statis-
tical methods for identifying differentially expressed genes in
replicated cDNA microarray experiments. Statistica Sinica, in
press.

Galitski,T., Saldanha,A.J., Styles,C.A., Lander,E.S. and Fink,G.R.
(1999) Ploidy regulation of gene expression. Science, 285, 251–
254.

Garber,M.E., Troyanskaya,O.G., Schluens,K., Petersen,S.,
Thaesler,Z., Pacyna-Genbelbach,M., Rijn,M., Rosen,G.D.,
Perou,C.M., Whyte,R.I. et al. (2001) Diversity of gene expres-
sion in adenocarcinoma of the lung. PNAS, 98, 13784–13789.

Gasch,A.P., Spellman,P.T., Kao,C.M., Carmel-Harel,O.,
Eisen,M.B., Storz,G., Botstein,D. and Brown,P.O. (2000)
Genomic expression programs in the response of yeast cells to
environmental changes. Mol. Biol. Cell, 11, 4241–4257.

Gerhold,D., Lu,M., Xu,J., Austin,C., Caskey,C.T. and
Rushmore,T. (2001) Monitoring expression of genes involved
in drug metabolism and toxicology using DNA microarrays.
Physiol Genomics, 5, 161–170.

Golub,T.R., Slonim,D.K., Tamayo,P., Huard,C., Gaasenbeek,M.,
Mesirov,J.P., Coller,H., Loh,M.L., Downing,J.R., Caligiuri,M.A.
et al. (1999) Molecular classification of cancer: class discovery
and class prediction by gene expression monitoring. Science,
286, 531–537.

Harada,H., Iwatsuki,K., Ohtsuka,M., Han,G.W. and Kaneko,F.
(1996) Abnormal desmoglein expression by squamous cell car-
cinoma cells. Acta Derm Venereol, 76, 417–420.

Hunter,L., Taylor,R.C., Leach,S.M. and Simon,R. (2001) GEST: a
gene expression search tool based on a novel Bayesian similarity
metric. Bioinformatics, 17 Suppl 1, S115–S122.

Islam,T.C., Lindvall,J., Wennborg,A., Branden,L.J., Rabbani,H. and
Smith,C.I. (2002) Expression profiling in transformed human
B cells: influence of Btk mutations and comparison to B
cell lymphomas using filter and oligonucleotide arrays. Eur. J.
Immunol., 32, 982–993.

Iyer,V.R., Eisen,M.B., Ross,D.T., Schuler,G., Moore,T., Lee,J.C.,
Trent,J.M., Staudt,L.M., Hudson,Jr,J., Boguski,M.S. et al. (1999)
The transcriptional program in the response of human fibroblasts
to serum.

Kaufmann,O., Fietze,E., Mengs,J. and Dietel,M. (2001) Value of
p63 and cytokeratin 5/6 as immunohistochemical markers for the
differential diagnosis of poorly differentiated and undifferenti-
ated carcinomas. Am. J. Clin. Pathol., 116, 823–830.

Kim,D.W. (2001) Real time quantitative PCR. Exp. Mol. Med., 33,
101–109.

Long,A.D., Mangalam,H.J., Chan,B.Y., Tolleri,L., Hatfield,G.W.
and Baldi,P. (2001) Improved statistical inference from DNA
microarray data using analysis of variance and a Bayesian
statistical framework. Analysis of global gene expression in
Escherichia coli K12. J. Biol. Chem., 276, 19937–19944.

Mayanil,C.S., George,D., Freilich,L., Miljan,E.J., Mania-Farnell,B.,
McLone,D.G. and Bremer,E.G. (2001) Microarray analysis de-
tects novel Pax3 downstream target genes. J. Biol. Chem., 276,
49299–49309.

Newton,M.A., Kendziorski,C.M., Richmond,C.S., Blattner,F.R. and
Tsui,K.W. (2001) On differential variability of expression ra-
tios: improving statistical inference about gene expression
changes from microarray data. J. Comput. Biol., 8, 37–52.

Pan,W. (2002) A comparative review of statistical methods for dis-
covering differentially expressed genes in replicated microarray
experiments. Bioinformatics, 18, 546–554.

Park,P.J., Pagano,M. and Bonetti,M. (2001) A nonparametric scor-
ing algorithm for identifying informative genes from microarray
data. Pac. Symp. Biocomput., 52–63.

Rajeevan,M.S., Ranamukhaarachchi,D.G., Vernon,S.D. and
Unger,E.R. (2001) Use of real-time quantitative PCR to
validate the results of cDNA array and differential display
PCR technologies. Methods, 25, 443–451.

Raychaudhuri,S., Stuart,J.M., Liu,X., Small,P.M. and Altman,R.B.
(2000) Pattern recognition of genomic features with microarrays:
site typing of Mycobacterium tuberculosis strains. Proc. Int.
Conf. Intell. Syst. Mol. Biol., 8, 286–295.

Tsodikov,A., Szabo,A. and Jones,D. (2002) Adjustments and mea-
sures of differential expression for microarray data. Bioinformat-
ics, 18, 251–260.

Tusher,V.G., Tibshirani,R. and Chu,G. (2001) Significance analysis
of microarrays applied to the ionizing radiation response. Proc.
Natl Acad. Sci. USA, 98, 5116–5121.

Walpole,R.E. and Myers,R.H. (1993) Probability and Statistics for
Engineers and Scientists, 5th edn, Macmillan, New York.

Whitfield,M.L., Sherlock,G., Saldanha,A., Murray,J.I., Ball,C.A.,
Alexander,K.E., Matese,J.C., Perou,C.M., Hurt,M.M.,
Brown,P.O. and Botstein,D. (2002) Identification of genes
periodically expressed in the human cell cycle and their
expression in tumors. Mol. Biol. Cell, in press.

Xiong,M., Fang,X. and Zhao,J. (2001) Biomarker identification by
feature wrappers. Genome Res., 11, 1878–1887.

Yang,J., Luo,X. and Cai,L. (1995) Expression of desmoplakin II in
tumors. Zhonghua Bing Li Xue Za Zhi, 24, 170–172.

1461


