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Decomposing regulatory networks into functional modules is a first
step toward deciphering the logical structure of complex networks.
We propose a systematic approach to reconstructing transcription
modules (defined by a transcription factor and its target genes) and
identifying conditions�perturbations under which a particular tran-
scription module is activated�deactivated. Our approach integrates
information from regulatory sequences, genome-wide mRNA expres-
sion data, and functional annotation. We systematically analyzed
gene expression profiling experiments in which the yeast cell was
subjected to various environmental or genetic perturbations. We
were able to construct transcription modules with high specificity and
sensitivity for many transcription factors, and predict the activation of
these modules under anticipated as well as unexpected conditions.
These findings generate testable hypotheses when combined with
existing knowledge on signaling pathways and protein–protein in-
teractions. Correlating the activation of a module to a specific per-
turbation predicts links in the cell’s regulatory networks, and exam-
ining coactivated modules suggests specific instances of crosstalk
between regulatory pathways.

Inference of intracellular regulatory networks is rapidly evolving
into one of the major research topics in computational biology

(1–5), which is not surprising, because virtually every biological
process is constrained by these networks. Many diverse changes in
the cellular environment are detected, causing signals to be trans-
duced, ultimately resulting in molecular responses (Fig. 1a). Often,
particular transcription factors (TFs) are activated and they recog-
nize, sometimes in a combinatorial fashion, specific DNA segments,
called regulatory elements, that generally lie upstream of the coding
sequence and regulate transcription of the corresponding genes.
The protein products of these genes can interact with other proteins
in the same or other signaling pathways, to further tune responses
to the extracellular stimuli, producing a variety of potential feed-
back loops.

Decomposing the networks into functional modules and defining
roles of each gene in a module are logical first steps toward a full
understanding of the structure and dynamics of the intracellular
networks (Fig. 1b). This study focuses on computationally identi-
fying transcription modules (i.e., a factor and all its target genes),
relating each module to the cellular conditions or perturbations that
control it, and discovering interactions between such modules, by
integrating the DNA sequence, gene function, and gene expression
data. In other words, by computing on the basis of these input data,
we want to answer the following: (i) Which genes are regulated by
a particular TF? (ii) Which TFs are activated by which extracellular
stimuli or perturbation to the cell? (iii) Which patterns of gene
expression are the results of coactivation (or deactivation) of more
than one module under a particular condition or perturbation?

Our approach consists of three steps:

1. Identification of transcription modules, which includes two
substeps:
A. Identification of the conserved core of the DNA regulatory

motif(s) in the promoter region recognized by a particular
TF. For this we use the REDUCER algorithm (6).

B. Identification of all of the genes likely to be directly regulated
by this TF by using an expression-weighted profile method
that we describe below.

2. Determination of which transcription modules are activated (or
deactivated) under particular experimental conditions. To this
end we define a statistic, the X value, that weights genes
according to both the expression ratio and the frequency of
occurrences of a specific motif. We then correlate X values under
varying conditions to those in the absence (by mutation or
deletion) or sometimes superabundance (by overexpression) of
the transcription factor.

3. Inference of interactions between coactivated transcription
modules by identifying genes shared by coactivated modules and
other annotation information, such as protein–protein interac-
tion and the hierarchy of known signaling pathways, obtained
from suitable databases.

We first identify conserved core regulatory motifs in a wide range
of microarray experiments by using the REDUCER algorithm
recently proposed by Bussemaker et al. (6). REDUCER performs
multivariate fitting of motif occurrence to mRNA expression level,
to identify core (i.e., generally up to �7 bases) regulatory motifs in
the promoter region. It does not depend on clustering of gene
expression patterns; motifs are determined to be significant or not
significant in a single microarray experiment. If the only perturba-
tion in a microarray experiment is deletion or mutation or overex-
pression of a transcription factor, we call it a transcription factor
perturbation experiment (TFPE). The most significant motif iden-
tified by REDUCER is usually the regulatory motif recognized by
the perturbed TF.

We then enhance the output of REDUCER to more exactly
identify both the target genes and the regulatory elements, which
may well be longer than 7 bases. To this end, we build a profile for
each DNA motif and its flanking regions; unlike the standard
profile method, each gene’s contribution to the profile is weighted
by its mRNA expression in the corresponding experiment. This
weighted profile should favor true target genes of the TF. In
practice, this profile method seems to greatly reduce the number of
apparent false positives found with motif-matching methods alone.
In addition, the weighted profile method can also reduce false
negatives by allowing identification of those target genes that do not
contain an exact core motif.

To identify the conditions that activate a particular transcription
module, we compare the gene expression profile of an experiment
of interest to that of the TFPE in which the transcription module
is indeed activated or deactivated. Instead of comparing the ex-
pression of the whole set of genes in the genome, we focus on a
subset of genes that are likely targets of the TF. This approach is
similar to a local similarity search in sequence alignment. For this
purpose, we define our statistic, the X value, which is the product
of gene expression ratio (log2 transformed) and the total number
of occurrences of a particular core regulatory motif (i.e., the
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REDUCER output) in the promoter region (600 bases upstream of
the ORF) of a gene. X values for all of the genes form a vector. After
we identify the regulatory motif recognized by a particular TF, we
calculate the Pearson correlation coefficient between the X value
vector for the TFPE and that for another experiment. A significant
value for the Pearson correlation coefficient suggests activation/
deactivation of the TF under the corresponding condition. The
advantage of comparing X value vectors is that all genes regulated
by a TF should have the particular regulatory motif and, thus, only
these genes have nonzero, presumably large, X values. In this way
we reduce the comparison space to a subset of the whole genome,
thereby increasing signal-to-noise ratio. Identifying conditions un-
der which a transcription module is active allows us to gain insight
into the functions of the module and predict new links in the cell’s
regulatory networks based on existing knowledge of signaling
pathways.

When two transcription modules are both activated under a
particular condition, it is possible that they may interact. By
examining genes shared by coactivated modules, we can obtain
evidence of any combinatorial regulation on the genes’ expression
by different TFs. Combining this evidence with information on
protein–protein interaction, one might be able to predict crosstalk
between different signaling pathways.

Methods
The Expression-Weighted Profile Method. Starting from the core
motif identified by REDUCER (6), we extract the sequences
matching the core motif and 7 base pairs flanking region at the each
end. Thus, the length of the extracted sequence is �20 bases,
enough to cover informative regions in most known yeast binding
sites.

A profile is built for the extracted DNA sequences, while at
each position each gene’s contribution to the profile is weighted
by the mRNA expression ratio of that gene. The probability of
nucleic acid z (A or C or G or T) at the ith position of the motif,
Pi(z), is calculated as:

Pi�z� �

�
j

�Ni j�z��Wj� � N0�z�

�
z��A, C, G, T�

��
j

�Nij�z��Wj� � N0�z�� , [1]

where Nij(z) � 1, if z appears of the jth sequence at the ith position
and Nij(z) � 0 otherwise. N0(z) is the pseudocount for each type of
nucleic acid. We use the background frequencies in the whole
genome promoter regions as pseudocounts, i.e., N0(A) � 0.314,
N0(T) � 0.311, N0(C) � 0.189, N0(G) � 0.185; Wj is the weight of
the jth sequence and is calculated as:

Wj � Ej � 1 if Ej � 1

Wj � 1�Ej � 1 if Ej � 1,
[2]

where Ej is the expression ratio (not logarithm base 2). Wj represents
how much change the jth sequence (gene) has. If one gene has m
copies of a motif, the weight of each copy of the motif is Wj�m. This
weighting scheme is used to diminish overrepresentation of any
single gene.

The profile matrix obtained from Eq. 1 was used to score all
subsequences of width of the matrix by using the standard scoring
scheme (7), with background frequencies taken as those in the
whole genome promoter regions. The best score of each sequence
(gene) was taken as its profile score. The distribu-
tion of the profile score is approximated by the extreme value
distribution, P(x � x0) � 1 � [1 � �x0

	 N(x, �, �)dx]m, where P(x � x0)
is the probability by chance the profile score is equal or larger than
x0, N(x, �, �) is the distribution of the score over all subsequences
that can be approximated by a normal distribution, and m is the
number of subsequences for each gene. The threshold x0 determines
the false positive rate, which was 0.01 for this study.

Definition of X Value and Calculation of P Value of Pearson Correlation
Coefficient. To include both expression and sequence information,
we define an empirical parameter called X value by using an
intuitive weighting scheme:

Xg�m, t� � Eg�t��Ng�m�, [3]

where Xg(m, t) is the X value of gene g corresponding to motif m in
the experiment t, Eg(t) is the logarithm base 2 of the expression level
of gene g in the experiment t, and Ng(m) is the total number of
occurrences of the motif m (identified by REDUCER) in the 600
bases upstream of translation start site of gene g.

P value of the Pearson correlation coefficient 	 is estimated by
bootstrap. We randomly permutated gene expression in both
experiments and number of motif occurrences in each gene. We
calculated 	 for 1,000 permutated data and fit the distribution of 	

Fig. 1. (a) A schematic diagram of the intracellular networks. Solid orange arrows represent detection of different cellular conditions, blue dashed arrows represent
possible activation of signaling pathways other than the default one, solid cyan arrows represent transcription factors’ regulation of their target genes, and the orange
dashed line represents possible protein–protein interactions. (b) Decomposition of the intracellular networks into transcription modules. Solid orange and cyan arrows
represent detection and transduction of extracellular signals, respectively, and red dashed arrows represent interactions between transcription modules.
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by a normal distribution. The P value of observed 	 for the real data
are calculated based on the normal distribution.

Results and Discussion
Construction of Transcription Modules. Identification of core regulatory
motifs. We first applied REDUCER to identify significant motifs in
the upstream regulatory regions of ORFs in 513 microarrays: 300
were deletion�wild type comparisons (8), 174 derived from time
courses under environmental stress (9), 9 were from a time course
during sporulation (10), 8 were from experiments studying the
metabolism of phosphate (11), and 22 derived from cell cycle
synchronization�time course experiments (12). In REDUCER
runs, we considered only all possible oligonucleotides up to 7 bases
long. Overall, REDUCER identified 1,093 distinct oligonucleotides
with lengths between 5 and 7 bases that are significant in one or
more microarray measurements. On average, several motifs were
identified per microarray measurement and, typically, the number
of motifs we found is consistent with the range of the cellular
response to the specific condition. For example, a large number of
motifs were found under amino acid starvation where the activation
of multiple TFs responsible for regulating the synthesis of amino
acids is expected. In contrast, only a few motifs (including the Pho4p
binding site) were found in the PHO4 mutation experiment. Many
previously known regulatory elements were identified under the
expected conditions, such as MCB and SCB sites during cell cycle,
MSE site during sporulation, the Pho4p site in phosphate metab-
olism, the Gcn4p site in amino acid starvation and nitrogen
depletion, and the STRE site in the general stress response exper-
iments. Many of the 1,093 motifs were consistently identified across
multiple time points of the same experiment (e.g., the Gcn4p site
across different time points of nitrogen depletion) or across mul-
tiple experiments (e.g., the stress response element across all stress
response experiments). A large number of these motifs were
unknown before; thus, they may represent the binding sites of
uncharacterized TFs (complete data available at http://genome-
www.stanford.edu�networks).

Twenty-five TFs listed in the SCPD database (13) were studied
in the deletion experiments (8) and three known TFs, PHO4,
MSN2, and MSN4, were studied in experiments in which they were
mutated (11) or overexpressed (9). The significant DNA motifs
identified by REDUCER in each above experiment were examined
manually. The DNA-binding sites of eight TFs, Gcn4p, Mbp1p,
Msn2p, Msn4p, Pho4p, Rtg1p, Ste12p, and Yap1p, were already
listed in the SWISS-PROT database (Table 2). All but one (Rtg1p)
of these motifs was also identified as the most significant motif
in the corresponding TFPE. In the RTG1 deletion experiment,
REDUCER identified the binding site of Rtg1p as the second most
significant, whereas the STRE element AGGGG was identified as
the most significant, which suggests that the cells experienced stress
when growing in the absence of Rtg1p. Therefore, for the TFs with
known binding sites, REDUCER was able to identify the correct
core motif with high specificity in the corresponding TFPE.

It should be noted that because of the complexity of the cell
regulatory networks, the most significant motif identified in a TFPE
might not necessarily be the motif directly bound by the factor.
Instead, the identified motif might be the binding site of its cofactor
or another factor that is activated under the perturbation.

For the remaining 20 transcription factors whose binding sites are
unknown (some of the factors may not directly bind to DNA), we
found significant motifs in each of the corresponding deletion
experiments. Particularly strong motifs were found in the deletion
of MAC1 (TGCACCC, P value �10�80), SIN3 (CGCGCGC, P
value 10�24), and TUP1 (AGGCAC, P value �10�25 and ACCCC,
P value �10�24). If a motif is the correct binding site of a
transcription factor (or a multisubunit aggregate containing the
factor), genes containing this motif in the promoter region should
have functions (as judged from gene annotations) consistent with
the regulatory function of the factor and have significant changes of

expression in the corresponding TFPE. Mac1p is a metal-binding
transcription activator and critical for regulating iron�copper up-
take (14). Many genes involved in iron uptake, e.g., FIT1�2�3,
FET3, FTR1, and FRE1�2�3�4�5, containing the motif TGCACCC
are up-regulated in the MAC1 deletion experiment. Interestingly,
the motif TGCACCC is also recognized by Aft1p, which regulates
iron uptake (14). This finding may suggest that MAC1 and AFT1
function together. Sin3p is not a DNA-binding protein itself, but is
part of a transcription complex responsible for silencing many genes
(15, 16). The motif we found is likely to be the binding site of one
of its partners. Tup1p is a general repressor and works together with
its cofactors to repress gene expression (17). One of its cofactors,
Mig1p, brings the Ssn6p-Tup1p repressor to DNA and represses
glucose-repressible genes (17). Using the motif AGGCAC identi-
fied by REDUCER, which is not the same as the known Mig1p site,
we found that many glucose transporter genes, such as HXT15�
16�17, are induced in the TUP1 deletion experiment. We speculate
that this motif is the binding site of a different factor or a variant
of Mig1p site.

We also screened for DNA motifs in the 3
 region in the 513
microarray measurements. Such motifs are believed to play roles in
regulation of mRNA stability (18, 19). REDUCER identified 946
distinct and significant oligonucleotides. Relating 3
 motif occur-
rence with particular gene deletion may provide insights into
proteins involved in mRNA degradation (see http://genome-
www.stanford.edu�networks for full data).
Identification of the targets of a TF with high specificity and sensitivity by
using the expression-weighted profile method. We constructed
weighted profiles for each of the 28 TFs. We found that we could
recover target genes from the TFPE with few apparent false
positives. An example is given in Table 1. Genes whose expression
ratio changes were �2-fold in the PHO4 mutation experiment were
ranked by their weighted profile scores. By choosing relatively
conservative cutoffs for both the weighted profile score (P � 0.01)
and for minimum expression ratio difference (2-fold here), we
ensure a low frequency of false positives.

In this example, the profile score cutoff fell between ORFs HIS1
and YAL053W. Therefore, we predicted the top 24 candidates as
target genes of Pho4p. It turned out that all but 8 of these 24 genes
(Table 1) were previously characterized as PHO-regulated genes
(11, 20). Among the 8 remaining putative target genes, YJL119C
and PHO86 are a pair of divergently transcribed genes, as are KRE2
and PHO8. Close examination of the data of Ogawa et al. (11)
reveals that expressions of YJL119C and KRE2 have �2-fold
changes in two and three phosphate metabolism experiments,
respectively. YJL119C also has 1.78- and 1.85-fold changes in two
low-phosphate vs. high-phosphate experiments. These observations
suggest that YJL119C and KRE2 might be regulated by Pho4p as
well.

PHO81, YPL110C, PHM5, PHM7, PHM8, and YER038C are also
listed as PHO-regulated genes by Ogawa et al. (11) because their
expression profiles are similar to other Pho4p target genes. The
profile score of PHM5 is close to our cutoff, and thus can be counted
as a false negative. The remaining five genes all have �2-fold
expression changes in the PHO4 mutation experiment. The profile
score of PHO81 is between YAR069C and VTC1, and YPL110C is
between VTC2 and YMR291W. The high profile score and low
expression change may suggest that these two genes are also
regulated by other TFs in the PHO4 mutation experiment. The
other three genes, PHM7, PHM8, and YER038C have low profile
scores and low expression changes. Our hypothesis is that they are
not real primary targets of Pho4p, although they nevertheless play
roles in the phosphate-metabolism pathway. PHM7 is experimen-
tally shown not to be a target of Pho4p, and PHM8 is an ambiguous
target (D. Wykoff and E. O’Shea, personal communication). Thus
for this example, our method appears to have provided addi-
tional specificity and identified additional targets of a quite
well-studied TF.
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The above PHO4 example illustrates the power of the weighted
profile method for identifying target genes of a TF. The method
identified the true targets of Pho4p with high sensitivity and
specificity, given only one microarray measurement (PHO4 muta-
tion). In contrast, clustering-based methods need multiple carefully
designed microarray measurements to cluster Pho4p targets. The
increased specificity of the weighted profile is because of the
additional information in the flanking region. In the PHO4 exam-
ple, we found several flanking positions with strong base prefer-
ences, contributing a total of 3.3 bits of information to the whole
profile (equivalent to decreasing false positive matches by a factor
of 23.3 � 9.8). Similar flanking region information contents were
observed for some other profiles constructed from TFPEs. This
additional information in the flanking region allows the identifica-
tion of target genes such as VTC1 and HIS1, which do not have the
exact core motif. For comparison, only 0.3 bit of information was
obtained from the flanking regions in the PHO4 example if the
extended profile was not weighted. It is worth emphasizing that,
because target genes of a TF are selected based not only on
sequence profile scores but also on their expression changes,
transcription modules are context-dependent.

Inference of Activation of a Transcription Module. To infer which
transcription module is activated under what condition, we calcu-
late the Pearson correlation coefficient between the X value vector
of the TFPE and those of individual arrays under other conditions.
The additional arrays were derived from studies of environmental
stress responses (9), sporulation (10), phosphate metabolism (11),
and cell cycle (12). Significant correlations were found (Table 2)
from which we could make inferences about transcription module
activation. We considered a TF activated only when P values of the
X vector correlation were �10�5 in �70% of arrays in a particular
experimental condition. Twenty-one conditions were considered
and each involved at least four arrays. This stringent requirement
was imposed to minimize false positives. We have yet to investigate
how much this stringency could be lowered and still produce useful
results. The 10 nitrogen depletion arrays were divided into early
(�8 h) and late (�8 h) stages because they appear to reflect
substantial biological differences.

Twenty-eight TFs were studied by TFPE. Several TFs were

known to be activated under particular conditions; for example,
Pho4p under low phosphate, Msn2p and Msn4p under heat
shock, Gcn4p under amino acid starvation, and Mbp1p during
cell cycle. By using our stringent requirement, all of the above
TFs are identified as activated by the corresponding conditions
(Table 2), which can be taken as prima facie validation of our
method.

An additional application of our method can be seen in the
results. Using X value to examine activation�deactivation of TFs
in gene deletion experiments can suggest signaling pathways’
new components. For instance, Ste12p is strongly (P � 10�20)
activated or deactivated by deleting many genes (highlighted in
Fig. 2). It is not unexpected that deleting any ‘‘upstream’’ gene
in the pheromone and filamentation–invasion pathways can
activate or deactivate Ste12p (Fig. 2) (21–24). Although the
mechanism is still not clear, the HOG pathway exerts negative
regulation on the pheromone pathway (25, 26), which is consis-
tent with our observation that HOG1 deletion activated Ste12p.
Several genes, such as CDC42, STE11, STE7, and DIG1�DIG2,
participate in more than one pathway. Pathway specificity is
thought to be achieved, at least partially, by assembling compo-
nent proteins with different scaffold proteins responding to
different signals, such as assembling Ste11p and Ste7p with Ste5p
in responding to a pheromone. Potential crosstalk between
pathways might happen if any of these component proteins is
deleted. YAL004W and YJL107C are ORFs whose functions are
not known; Afg3p, Bud14p, Dia2p, Erg28p, Hmg1p, Hmg2p,
Rad6p, Sod1p, and Ste24p were not previously known to be
associated with the pheromone-response pathway, but their
annotations suggest they may play roles in mating (see SGD,
http://genome-www.stanford.edu). Deletion of all above genes
except for BUD14 and DIA2 deactivates Ste12p. These obser-
vations may shed light on functions of the above genes�ORFs
and identify new regulatory mechanisms to pheromone re-
sponse. The above discussion of Ste12p activation shows that
examining activation or deactivation of downstream transcrip-
tion modules can help identify component proteins of a signaling
pathway. Further, when combined with protein–protein inter-
action data, this strategy can help determine the pathway
hierarchy and interactions between pathways.

Table 1. Target genes of Pho4p identified by the weighted profile method

Rank Gene Motif Expression ratio, log2 Ogawa* et al. Carroll* et al.

1 PHO89 AATGCAGCACGTGGGAGACAA 5.262 � �

2 SPL2 ATGTACGCACGTGGGCGAAAG 4.605 �

3 PHO84 TTTCCAGCACGTGGGGCGGAA 5.491 � �

4 PHO11 GCGTTCACACGTGGGTTTAAA 4.287 � �

5 PHO12 GCGTTCACACGTGGGTTTAAA 4.159 � �

6 VTC4 TCATCCGCACGTGGCTGCACA 3.296 � �

7 PHO5 GCACTCACACGTGGGACTAGC 2.816 � �

8 PHM6 TCGCTGACACGTGGGAGGTGG 2.998 � �

9 PHO8 ATCGCTGCACGTGGCCCGACG 1.546 � �

10 KRE2 ATCGCTGCACGTGGCCCGACG 1.233
11 VTC3 GAGGGCCCACGTGGCTTAATA 4.297 � �

12 CTF19 GAGGGCCCACGTGGCTTAATA 1.864 � �

13 HOR2 TTTACGTCACGTGGGAGGCCC 1.021 �

14 VTC2 CAAGCAGCACGTGGGTTTTTT 1.599 � �

15 YMR291W AACCTAACACGTGGAGGTTTT 1.257
16 YLR402W GAGTTTGCAGGTGGGACTAAT 2.223
17 YAR069C GTTCACACTCGTGGGGCCCAC 1.438
18 VTC1 ATATTAGCACGTGTCTCGGAG 2.485 � �

19 CDA1 ATACCAACAAGTGGGTTGATT 1.852
20 CTT1 GACGAGGCACATGGGGATAGA 1.251
21 PHO86 GCGCCCGCACGTGCTCTTTAT 1.356 � �

22 YJL119C GCGCCCGCACGTGCTCTTTAT 1.070
23 YJR039W CCTGTTCCACATGGGCGGTTA 1.876
24 HIS1 GTGTACGCACGTAGCCAACGA 1.275 �

*Genes experimentally identified as targets of Pho4p by Ogawa et al. (11) or Carroll et al. (20) are marked with checks.
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In Table 2, we also see unexpected activation of transcription
factors. For example, Pho4p appears to be activated in the five
hypoosmotic shock experiments, where the P values of the X
vector correlation were 10�9, 10�9, 10�12, 10�24, and 10�14,
respectively. Transcription of most (but clearly not all) Pho4p
target genes was induced in these experiments. Among the five
hypoosmotic shock experiments, the 45-min time point has the
highest correlation coefficient, 0.8, and the smallest P value,
10�24. In this experiment, among the total of 69 genes with
�2-fold up-regulation changes, there are 8 known Pho4p target
genes, SPL2, VTC3, PHO12, PHO84, PHO81, VTC1, PHO89,
and PHO11. Thus, Pho4p targets are significantly enriched in the
subset of 69 genes (expect 0.2, observe 8, chance probability

�10�20). It is worth mentioning that the activation of Pho4p
module in hypoosmotic stress could not have been identified by
global correlation. Determining the biological significance of
Pho4p activation in hypoosmotic shock will require further
experimentation.

In amino acid starvation and the early stage of nitrogen-
depletion experiments, our algorithm indicates the activation of
Gcn4p, Yap1p, and Rtg1p. It is interesting that these TFs appear
not to be activated in the late stage of nitrogen depletion (�8 h)
experiments; instead our algorithm predicts the activation of
Mbp1p, Ste12p, and Tup1p. This result suggests that the physiology
of the cell after 8 h of nitrogen depletion has been changed
significantly. Another interesting observation is the predicted ac-

Fig. 2. Mitogen-activated protein kinase (MAPK) pathways [modified from Roberts et al. (23)]. Genes, if deleted, to activate or deactivate Ste12p, as inferred
from X vector comparison, are correspondingly red or green.

Table 2. TFs and the most significant DNA motif identified by REDUCER in the corresponding TFPE

TF Motif P value Known binding site* Biological process† Activation conditions‡

GCN4 TGACTCA 10�80 TGA(C�G)TCA Transcriptional activator of amino AA, END
TGAGTCA 10�26 acid biosynthetic genes

MBP1 ACGCGT 10�27 MCB site
ACGCG(T�A)

DNA replication, cell cycle control CC, DS, LND, mHSdo

MSN2 AGGGG 10�26 AGGGG Stress response ES, PHO
MSN4 AGGGG 10�33 AGGGG Stress response ES
PHO4 CACGTGG 10�30 CACGTG Phosphate metabolism PHO, HOO
RTG1 GGTCACG 10�5 GGTCAC Interorganelle communication AA, END
STE12 TGAAAC 10�14 PRE site

TGAAAC(G�A)
Invasive growth, pheromone

induction, pseudohyphal growth
LND

YAP1 TGACTCA 10�8 TGACTCA Regulation of certain oxygen
detoxification enzymes

AA, END

MAC1 TGCACCC 10�80 Unknown Cu�Fe utilization, stress resistance CC, H2O2, SSC, SST
SIN3 CGCGCGC 10�24 Unknown Transcription None
TUP1 AGGCAC 10�25 Unknown Glucose repression LND, YPD

*The known binding site of each transcription factor is based on the SWISS-PROT database.
†Biological process for each transcription factor is taken from the Gene Ontology (GO) Consortium and SWISS-PROT.
‡Activation conditions: AA, amino acid starvation; CC, cell cycle; DS, diauxic shift; END, early nitrogen depletion (�8 h); ES, all
environmental stresses; H2O2, constant 0.32 mM H2O2 exposure; HOO, hypoosmotic shock; LND, late nitrogen depletion (�8 h); mHSdo,
mild heat shock from 29 to 33°C at various osmolarities; PHO, phosphate metabolism; SSC, steady-state growth on alternative carbon
sources; SST, steady-state growth at various temperatures; YPD, stationary phase in yeast extract�peptone�dextrose medium.
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tivation of Msn2p, but not Msn4p, in phosphate metabolism studies.
It is worth noting that in many gene deletion experiments, the most
significant motif was the Gcn4p-binding site. One possibility is that
GCN4 is a general regulator playing a wider role than amino acid
regulation.

The algorithm also predicts other previously unreported in-
stances of TF activation: Mac1p in H2O2 exposure, steady-state
growth on various carbon sources, steady-state growth at dif-
ferent temperatures and cell cycle, Tup1p in stationary phase in
yeast extract�peptone�dextrose medium, Mbp1p during the
diauxic shift, and mild heat shock at various osmolarities. All
these remain to be confirmed and studied by future experiments.

Interactions Between Transcription Modules. There are a number of
scenarios in which interactions between modules might occur.
Some genes could be regulated by several different modules,
leading to combinatorial control and possibly synergistic effects.
This mode of interaction can be detected by examining genes
shared by different modules. Alternatively, the transcriptional
targets of different modules might interact physically through
protein–protein interaction, or more interestingly, the targets of
one module may interact with the proteins in the pathway
upstream of another module (see a schematic sketch in Fig. 1a).
To detect these modes of interaction, it may often be necessary
to have fuller knowledge of pathways and protein–protein
interactions.

As an example, consider the transcriptional response to amino
acid starvation. There are four distinguishable modules regulated
by Msn2p�4p, Gcn4p, Yap1p, and Rtg1p, respectively. We detected
significant overlaps between modules, such as Rtg1 and Msn2�4
modules. This result suggests that genes important in amino acid
starvation response are probably regulated by several factors in a
combinatorial fashion.

In addition to coregulating genes, the Rtg1 module may also
interact with Msn2�4 modules at the protein level. In Munich
Information Center for Protein Sequences (MIPS) database (http://
mips.gsf.de), a target gene of Rtg1p, SER33, interacts with SER3,
which is putatively regulated by Msn2p and Msn4p.

In another example, we observed that a putative target gene
of Mbp1p, SPA2, interacts with proteins in the signaling
pathway upstream of other TFs. Among proteins that interact
with Spa2p (MIPS database), Ste20p, Ste11p, and Ste7p
function in the upstream of TF Ste12p in the pheromone and
filamentous growth pathways, and Mkk1p, Mkk2p, and Slt2p
are involved in the protein kinase C (PKC) pathway, which can
activate TFs Swi4�6p complex and Rlm1p (22) (Fig. 2);
therefore, activation of one module such as the Mbp1 module
may further tune the activity of other transcription modules
such as the Ste12 module.

We believe as information on pathways and protein–protein
interactions becomes more complete, analyzing interactions be-
tween modules along these lines will allow discovery of more links
among regulatory networks.

Conclusion
The great challenge in understanding biological complexity is to
reconstruct the regulatory networks governing observed pat-
terns of expression. Here we propose a systematic approach to
tackle this problem from a new, to our knowledge, perspective,
by constructing transcription modules and identifying the
conditions under which they are activated. Combined with
REDUCER, the expression-weighted profile method can be
used to identify transcription modules in a single microarray
measurement, which cannot be done by the conventional clus-
tering approach. We were able to use the X value, which
combines information from expression data and regulatory
sequences, to reveal activation of the same transcription module
under different conditions, even when the corresponding ex-
pression profiles are ‘‘globally’’ dissimilar. In addition, X value
comparison can distinguish activation of different TFs that share
the same core regulatory motif, such as Pho4p (CACGTG) and
Cbf1p sites (CAYGTGA) (SWISS-PROT), because of the dif-
ference between the corresponding expression data. In this
study, for simplicity, we constructed X values based on the
number of occurrences of core motifs. A potential improvement
is to replace the number of core motifs by 1 or 0, depending on
whether the gene is in the constructed module or not.

Our results indicate that the binding site and the targets of a TF
can be determined, based on a single TFPE using REDUCER and
the weighted profile. This finding suggests that microarray profiling
of TFPEs for all of the TFs in the genome, followed by our analysis,
may be a comprehensive and efficient way to map transcription
networks on a genomic scale. It also should be noted that microar-
ray data are only one of many possible inputs. The approach can be
extended to analyzing other genome-wide functional data such as
protein array data, and of course it can be compared with empirical
methods such as chromatin immunoprecipitation followed by DNA
array hybridization.
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