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Analysis of the patterns of gene expression in follicular lymphomas
from 24 patients suggested that two groups of tumors might be
distinguished. All patients, whose biopsies were obtained before
any treatment, were treated with rituximab, a monoclonal anti-
body directed against the B cell antigen, CD20. Gene expression
patterns in the tumors that subsequently failed to respond to
rituximab appeared more similar to those of normal lymphoid
tissues than to gene expression patterns of tumors from rituximab
responders. These findings suggest the possibility that the re-
sponse of follicular lymphoma to rituximab treatment may be
predicted from the gene expression pattern of tumors.

Follicular non-Hodgkin’s lymphoma (NHL) is an indolent B
cell malignancy with an annual incidence exceeding 10,000
cases in the United States. Although follicular lymphoma (FL)
is frequently responsive to treatment, therapy is very rarely, if
ever, curative. Rituximab, a chimeric IgG1 monoclonal antibody
directed at the B cell antigen CD20, has become a mainstay of
treatment for low-grade NHL; >400,000 patients worldwide
have been treated with rituximab. Phase II trials of rituximab in
patients with refractory or relapsed low grade or follicular NHL
demonstrated a 50% response rate (1).

Despite this extensive clinical experience, the mechanism of
action of rituximab remains unclear, as does the nature of resistance
(2). Among the proposed mechanisms are antibody-dependent
cell-mediated cytotoxicity (3), complement-mediated cytotoxicity
(4), and direct cytotoxicity through modulating CD20 function
(5-7). The association with resistance to rituximab treatment of a
low-affinity variant of the Fc receptor (8) is suggestive of an immune
mechanism, and remains the only plausible hint about the nature of
resistance.

In this study, we examined whether gene expression profiling
using cDNA microarrays could reveal biological diversity among
follicular lymphomas and, more specifically, whether gene expres-
sion patterns in tumors might predict sensitivity to rituximab
treatment.

Materials and Methods

Patient Characteristics. Patients were included in this study based on
the availability of freshly frozen lymph node biopsy material
containing enough mRNA to allow ¢cDNA microarray analysis.
Only patients with samples that had been obtained before any
systemic therapy were included. In all cases the pathological diag-
nosis was follicular non-Hodgkin’s lymphoma [follicular small
cleaved (grade 1), follicular mixed (grade 2), or follicular large cell
(grade 3) histology]. Each patient received rituximab treatment
with documentation of clinical outcome. In all cases, biopsy and
pathology review were performed at Stanford University Medical
Center. Rituximab treatment was administered either at Stanford
University Medical Center or by an outside oncologist.

Microarray Procedures. Freshly frozen lymph node samples were
obtained from patients who underwent excisional biopsy at
Stanford University Medical Center between 1984 and 1997,
who subsequently received rituximab between 1994 and 2000 and
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whose clinical response to rituximab treatment had been re-
corded. Tonsil and spleen samples were similarly obtained from
patients treated at Stanford University Medical Center in 2000
or 2001. Biopsy samples were stored frozen in optimal cutting
temperature compound. Poly(A)* mRNA was obtained from
biopsy samples after homogenization of tissue with the FAST-
TRACK 2.0 kit (Invitrogen). An experimental cDNA probe in-
corporating Cy5 dye was generated from mRNA from malignant
and normal lymphoid tissues; a common reference cDNA probe
incorporating Cy3 dye was from mRNA derived from a panel of
cell lines and probes were hybridized to cDNA microarrays as
described (9, 10). Two types of microarrays were used. Some
experiments in this study used Stanford Human arrays com-
prised of 38,431 DNA spots of 38,276 unique cDNA clones,
representing ~31,139 unique Unigene clusters of which 16,152
correspond to unique named genes. Some experiments were
conducted with lymphochip (LC) microarrays comprised of
37,632 DNA spots with 32,876 unique cDNA clones, represent-
ing ~17,622 Unigene clusters of which at least 10,250 are unique
named genes. More detailed information regarding microarray
methods, and data selection, and analysis, as well as searchable
figures and microarray data files, can be found at http://genome-
www.stanford.edu/rituximab.

Statistical Analysis. Before statistical analysis, individual data
points were median centered for each cDNA clone and filtered
for data quality and signal at least 2-fold above the median in two
or three of the samples in each data set, as described in the web
supplement. Agglomerative hierarchical cluster analysis was
applied to the gene axis and to the sample axis as described (11).
Hierarchical cluster analysis of LC data revealed a technical
artifact that resulted in samples segregating by the date of the
experiment. Further investigation revealed that this artifact was
likely caused by differences in the calibration of the two scanners
used to read the arrays. Singular value decomposition was used
to remove the pattern corresponding to this artifact before
analysis (12) after missing data were estimated by using a
K-nearest neighbors (KNN) impute algorithm with 12 nearest
values (13). Supervised analysis taking into account known
outcome to rituximab treatment was performed by using Wil-
coxon rank sum test to generate a rank list of genes whose
corresponding mRNA levels differ significantly in rituximab
responders versus nonresponders (14).

Results

Patient Characteristics. Tumor samples from 24 patients were
analyzed in this study. No significant differences in age or
treatment history were observed between responders and non-
responders (Table 1). All patients except one received at least
one course of chemotherapy before receiving rituximab (range,
0-6 prior courses). One patient had received a shared anti-
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Table 1. Patient characteristics by response to rituximab treatment

PR/CR MR/NR

Patient characteristics (n=12) (n=12)
Sex (M:F) 7:5 10:2
Age at diagnosis =+ SD, years 45.3 £ 10.1 46.3 + 13.2
Age at rituximab = SD, years 52.2 = 13.7 51.6 = 9.2
Pathology

FSC 7 9

FM 5 2

FLC 0 1
Mean courses of prior chemotherapy 24 24
Prior high dose chemotherapy 2 3

NR, no response; MR, minimal response; PR, partial response; CR, complete
response; M, male; F, female; FSC, follicular small cleaved; FM, follicular mixed;
FLC, follicular large cell. Age data are presented as mean age in years for each
group = standard deviation. None of the differences between the groups are
statistically significant (P > 0.35 in all cases).

idiotype antibody as the sole prior treatment. For the treatment
of FL, a course of rituximab typically consists of four weekly
infusions of 375 mg/m?; 21 of 24 patients received this dosing
regimen, including all of the patients in the nonresponder group.
In the partial response/complete response (PR/CR) group, two
patients received a single dose of 375 mg/m? and one patient
received eight weekly doses of 375 mg/m? with a documented
near CR after 6 weeks of treatment. The overall response rate
(CR+PR) for the patients in this study was 50%, which is similar
to the overall response rate of 60% demonstrated for FL in the
pivotal Phase II trial (1). Five patients achieved CR in response
to rituximab, seven patients experienced PR, and 12 patients had
no or minimal response.

Gene Expression Patterns Identify Two Subtypes of Follicular Lym-
phoma. An overview of the gene expression patterns from FL
patients was generated by hierarchical cluster analysis of data from
the first 16 FL patients analyzed together with samples from
nonmalignant tonsil and spleen (Fig. 14). The hierarchical cluster
algorithm arranges tissue samples based on the degree of similarity
in their gene expression patterns (11). In addition to tumor material
obtained before treatment, we included tissue samples from later
biopsies for four patients for whom such material was available.
These repeat biopsies were obtained 2.5-6.5 years after the initial
biopsy but before rituximab treatment. In all of the repeat biopsy
cases, patients received one or more courses of chemotherapy
between the initial and later biopsies and the histopathological
diagnosis was the same for both biopsy samples.

To focus on genes differentially expressed in the samples, ex-
pression data from 2,037 unique genes whose expression differed
2-fold in at least three arrays were used for analysis. The dendro-
gram shown in Fig. 14 shows that the FL samples could be divided
into two groups, with a subset of the FL samples exhibiting a gene
expression pattern more similar to nonmalignant lymphoid tissues
than to the other FL subtype. Hierarchical cluster analysis of the
genes and tissue samples that contribute to the subclassification of
FL samples are shown in Fig. 1B. The two subtypes of FL display
gene expression patterns similar to or opposite those of nonmalig-
nant spleen. It should be emphasized that the observed patterns of
gene expression reflect all of the cells in the tumor, not only the
tumor cells themselves. Interpretation of expression differences
may include the differential presence or absence of other cell types,
as has been found for breast cancer (9).

Rituximab Nonresponders Display Gene Expression Patterns Charac-
teristic of Normal Lymphoid Tissue. Having divided the FL samples
into two groups based on gene expression patterns, we sought to
determine whether these subtypes correspond to clinical differ-
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ences in individual patients, in particular, in response to ritux-
imab treatment. We found that the rituximab nonresponders
(orange in Fig. 1) were disproportionately distributed between
the two FL clusters. Most of the rituximab nonresponders
clustered with normal tonsil and spleen tissue (P < 0.005,
Fisher’s exact test). These findings indicate that there is biolog-
ical diversity in FL lymph nodes from different patients before
rituximab treatment and that the specific gene expression pat-
terns defining the two groups described may be useful in
predicting outcome to rituximab treatment.

Two features of the dendrogram in Fig. 1 indicate that the
clustering of tissue samples based on gene expression patterns is
reflective of biologically relevant similarities between samples.
First, pairs of normal spleen and tonsil tissue cluster very closely
together. Second, FL lymph node biopsies from the same
individual cluster together in three of the four cases (see black
bars in Fig. 14) despite the passage of time and treatment with
systemic chemotherapy between biopsies. An exception was the
two samples obtained from patient 13 which did not cluster
together (Fig. 14, black arrows) with the pretreatment biopsy
clustering with the responders’ portion of the dendrogram and
the later sample displaying a gene expression pattern more
similar to that of rituximab nonresponders and normal lymphoid
tissue. The latter sample was predictive of the patient’s actual
outcome after rituximab treatment; the patient did not respond.
This observation suggests that the gene expression phenotype of
FL can change over time.

Genes with Significantly Different Expression In Rituximab Respond-
ers Versus Nonresponders. To better understand differences in gene
expression in involved lymph nodes from rituximab responders
versus nonresponders, we used supervised statistical analysis to
determine which genes had the most significant differences in
expression between the two groups. Having observed that differ-
ences in gene expression in FL subtypes correlate with expression
patterns in normal lymphoid tissues, samples from the original 16
patients and an additional 8 patient samples were analyzed on LC
microarrays enriched for genes expressed in lymphoid cells and
genes known or suspected to be important in the immune response
or cancer (10). A list of genes whose expression differed between
responders and nonresponders with a P value <0.005, as deter-
mined by Wilcoxon rank-sum test (14), was chosen. In cases where
expression of a given gene was measured on both Stanford Human
and LC microarrays, genes were included if the P value was less than
0.005 in either the Stanford Human or LC data set and a cDNA
from the same Unigene cluster displayed a P value of <0.05 in the
other dataset. Genes that were measured in only one data set were
included if the P value is <0.005. The results of this analysis are
presented in Tables 2 and 3. By these criteria, 71 genes had
significantly higher expression in rituximab nonresponders versus
responders; 53 named genes are on this list and 35 of the Unigene
clusters represented were measured on both arrays. A total of 27
genes were more highly expressed by these criteria in rituximab
responders; of these, 11 are named genes and 5 were measured on
both arrays. Of note, CD20 expression was well measured and did
not correlate with outcome to rituximab treatment.

Many of the genes with higher expression in tissue from
rituximab nonresponders appear to be involved in cellular
immune response and inflammation, specifically those encoding
cytokine, tumor necrosis factor, and T cell receptor signaling,
and complement proteins (Table 4). Given the limitations of
available experimental evidence, this simplistic classification
cannot account for the complexity of function or regulation of
these genes; perhaps, mediators of cellular immune response,
such T cells, macrophages, monocytes, and natural killer cells,
may be relatively more abundant and/or more active in lymph
node tissue of rituximab nonresponders. Several mRNAs for
proteins involved in the complement cascade are more abundant
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Fig. 1. Hierarchical cluster analysis of gene expression patterns in follicular lymphoma. (A) Patterns of gene expression in FL lymph nodes from rituximab responders
cluster with normal lymphoid tissue. A total of 20 FL lymph node samples from 16 patients and four normal lymphoid tissues (two tonsil and two spleen) from four
different patients were sorted by hierarchical clustering based on similarity of gene expression. The resulting dendrogram is shown. Patient pathological diagnosis or
normal tissue type, and response to rituximab treatment are shown. Samples are color coded by response to rituximab (for FL samples) or normal tissue for simplicity.
For four patients, paired samples are presented; biopsy samples obtained later are identified by patient number plus ““.2". In three cases (patients 6, 8, and 18), paired
samples clustered together (black bars). The two samples from patient 13 clustered on separate branches of the dendrogram (arrows). (B) Patterns of gene expression
in FL samples and normal lymphoid tissue. Hierarchical clustering of genes and samples was performed. Variation of gene expression measured with 2,037 genes in
20 FL and four nonmalignant lymphoid tissue samples. Data are presented in a matrix format; each row represents a particular cONA and each column is an individual
FL or normal lymphoid tissue sample. For each sample, the ratio of the abundance of the mRNA measured by each cDNA clone to the median abundance of the mRNA
across all tissue samples is represented by color in the corresponding cell in the matrix. Green represents transcript levels less than the median, black represents transcript
levels equal to the median, and red represents transcript levels greater than the median. Color saturation represents the magnitude of the ratio relative to the median
for each cell (see scale). Colored bars the to right of the matrix define groups of genes with similar expression patterns in normal lymphoid tissues, with blue denoting
genes displaying relatively higher expression in spleen, purple denoting genes with higher expression in tonsil, and brown denoting genes with lower expression in
spleen. Data can be viewed on our web site at http://genome-www.stanford.edu/rituximab/.
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Table 2. Genes expressed at significantly higher levels in
rituximab nonresponders versus responders

Gene or clone name P value on LC P value on SH

Table 3. Genes expressed at significantly higher levels in
rituximab responders versus nonresponders

Gene or clone name P value on LC P value on SH

IMAGE:2021765 0.0002 N.M.

NPDC1 0.0002 0.0018
TNFRSF1B 0.0003 0.0150
CCND1 0.0248 0.0004
DUSP6 0.0047 0.0004
c4B 0.0006 0.0025
JUNB 0.0006 0.0041
PTPRM 0.0006 0.0035
FLJ20967 N.M. 0.0006
IMAGE:4100953 N.M. 0.0006
NGFRAP1 0.0007 0.0009
DAAM2 N.M. 0.0009
DKFZp564C2063 0.0248 0.0009
SSI-3 0.0010 0.0018
RET 0.0011 0.0320
MLPH N.M. 0.0013
Cc1s 0.0013 0.0018
TRB@ 0.0016 0.0404
CAV1 0.0065 0.0018
IFITM1 0.0047 0.0018
IMAGE:3899550 N.M. 0.0018
KIAA1223 N.M. 0.0018
RAB38 N.M. 0.0018
UACA 0.0040 0.0018
C1QR1 0.0019 0.0086
SNX9 0.0019 0.0114
IMAGE: 1371537 0.0023 N.M.

MOX2 0.0023 N.M.

IMAGE:27277 N.M. 0.0025
FLJ23221 N.M. 0.0025
FLJ23705 N.M. 0.0025
LOC115908 N.M. 0.0025
LOC51087 N.M. 0.0025
NCF4 N.M. 0.0025
TYROBP 0.0077 0.0025
BHMT 0.0028 N.M.

PTDO004 0.0028 0.0064
Similar to MM20 0.0028 N.M.

SLC21A9 0.0028 N.M.

SPP1 0.0028 N.M.

TNFSF10 0.0028 0.0195
CRY1 0.0033 N.M.

NK4 0.0033 0.0064

P values are determined by Wilcoxon rank sum test. SH and LC refer to
different microarray configurations. “N.M."” indicates that expression of this
cDNA clone or Unigene cluster was not measured on the corresponding array

type.

in nonresponders; the complement cascade can mediate direct
cytotoxicity and/or act to stimulate cell-mediated cytotoxicity by
opsonization of target cells. We were unable to identify a
compelling physiological link among the 11 named genes with
significantly increased expression in rituximab responders.

Discussion

Variation in gene expression patterns of FL lymph nodes suggests
that it may be useful to divide these tumors into two groups. We
suppose that these subtypes are reflective of basic biological
differences between FL samples from different individuals. As
mentioned before, the differences could be the result, at least in
part, of the differential admixture of cells other than the malignant
B cells that comprise most of the tumor. Thus, although it is quite
possible that the subtypes identified simply represent molecular
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IMAGE:1582330 N.M. 0.0006
IMAGE: 1475660 N.M. 0.0006
IMAGE:1504098 N.M. 0.0009
PRO0650 N.M. 0.0009
IMAGE:626773 N.M. 0.0009
IMAGE:460189 N.M. 0.0009
IMAGE:22374 N.M. 0.0013
Similar to MGR7 N.M. 0.0013
KIAA0317 N.M. 0.0018
H2BFG N.M. 0.0018
RRM2B N.M. 0.0018
DKFZp434K1210 N.M. 0.0018
IMAGE:1891596 N.M. 0.0018
BRI3BP 0.0470 0.0025
FREB 0.0470 0.0025
DKFZp564D113 N.M. 0.0025
UBQLN1 N.M. 0.0025
IMAGE:826372 N.M. 0.0025
DKFZp434B1620 N.M. 0.0025
GLE1L N.M. 0.0030
H2BFB 0.0065 0.0035
ST14 0.0416 0.0035
IMAGE:752612 N.M. 0.0035
BLNK 0.0416 0.0048
IMAGE:1560875 N.M. 0.0048
BLCAP N.M. 0.0048
IMAGE:814273 N.M. 0.0048

P values are determined by Wilcoxon rank sum test. SH and LC refer to
different microarray configurations. ’N.M."" indicates that expression of this
cDNA clone or Unigene cluster was not measured on the corresponding array
type.

heterogeneity in the malignant cells, the finding that one subtype
displays an expression pattern more similar to nonmalignant lym-
phoid tissue raises the possibility that the subtypes may, in fact,
result from interactions between the malignant B cells and other cell
types in the host. On the basis of the genes differing most in their
expression between the two subtypes of tumors, it is possible that
the differences may involve either the participation or the activities
of cells involved in host immune response to the tumors. In any case,
on the basis of this preliminary study, the subtype (and the response
to rituximab) appears to be determined by the time of initial
diagnosis and distinctive features of the gene expression pattern of
a given individual’s lymphoma appear to be recognizably retained
over an interval of years.

Gene expression profiling studies of various malignancies have
identified previously unappreciated subtypes within accepted
pathological diagnoses and, in some cases, the prognoses of these
subtypes varied significantly (10, 15-17). Several models of
rituximab resistance are consistent with our findings. If ritux-
imab nonresponders are capable of mounting a cellular immune
response to their tumor before therapy, the FL cells may have
been selected to evade this immune response and this may
translate into an ability to evade any antibody-dependent cell-
mediated cytotoxicity (ADCC) response subsequently triggered
by rituximab. Alternatively, it has been proposed that FL cells
may be able to recruit a cellular microenvironment similar to that
in the germinal center, which facilitates the growth of the
lymphoma cells (18). Following this line of reasoning, the list of
genes with higher expression in rituximab nonresponders may
indicate that these tumors may more effectively induce a growth
stimulating microenvironment and this more favorable micro-
environment may make these cells less sensitive to killing by

PNAS | February 18,2003 | vol. 100 | no.4 | 1929

MEDICAL SCIENCES



Table 4. A subset of genes with significantly higher expression
in rituximab nonresponders versus responders are listed by
biological function

Cytokine signaling
STAT4
STAT-induced STAT inhibitor 3
Secreted phosphoprotein 1 (osteopontin)
MRC OX-2 antigen
Small inducible cytokine, subfamily B, member 1 (GRO1)
Small inducible cytokine, subfamily A, member 2
Natural killer cell transcript 4
IFN-induced transmembrane protein 1 (LEU13)
IFN-induced transmembrane protein 2
IFN-induced transmembrane protein 3
IL-2 inducible T cell kinase
Protein tyrosine kinase binding protein
Neutrophil cytosolic factor 4

Complement
Complement component 4B
Complement component 1, s subcomponent
Complement component 1, g subcomponent, receptor 1

T cell receptor signaling
T cell receptor B8
{-chain (TCR) associated protein kinase (70 kDa)

Tumor necrosis factor signaling
Tumor necrosis factor receptor superfamily, member 1B
Tumor necrosis factor, a-induced protein 2
Jun B protooncogene
Tumor necrosis factor (ligand) superfamily, member 10
Growth arrest and DNA damage-inducible gene, 8
FOS protooncogene
p75NTR-associated cell death executor

A review of the literature for all 53 named genes in Table 2 identified 25
geneswhose products have been demonstrated to function in cytokine, tumor
necrosis factor, T cell receptor signaling, or complement function. STAT, signal
transducer and activator of transcription.
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rituximab through ADCC, complement-mediated cytotoxicity,
or induction of apoptosis.

Prognostic tests allowing the prediction of response to specific
therapeutic agents would be of great utility, as they would allow
physicians to choose therapy to maximize patient benefit while
avoiding unnecessary delay, toxicity, and expense. Our findings
suggest that it may be possible, at the time of the initial diagnosis
of follicular lymphoma, to predict whether patients will later
respond to rituximab treatment for relapsed or refractory disease.
The data described here suggest that analysis of gene expression
patterns in tumors may allow prediction of the sensitivity of tumors
to particular antitumor agents and elucidate the biology underlying
resistance to a given therapy. In fact, the possibility of dividing FL
into molecularly distinct subtypes may confer additional useful
information on differences among these tumors, such as response
to therapies other than rituximab. Clearly, our findings require
validation on a larger, independent patient cohort. A better un-
derstanding of the nature of resistance to rituximab treatment may
allow more effective use of this powerful agent. For instance, it is
possible that patients who are resistant to standard rituximab dosing
may benefit from rituximab administered at a different dose or
schedule, or may respond to rituximab in combination with other
agents. The ability to prospectively identify patients who are
relatively resistant to rituximab would facilitate clinical trials to
determine the optimal treatment for such patients.
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