
The discovery of the double-helical structure of DNA,
and the concomitant realization that DNA molecules
carry genetic information digitally encoded in their nu-
cleotide sequences (Watson and Crick 1953a,b,c), neatly
divide the history of biology in the 20th century. The first
half featured the rise of classical genetics: analysis of the
inheritance of traits obtained at first from natural varia-
tion and later by induced or selected mutations. Much
was learned from breeding studies in plants and simple
“model” organisms such as Drosophila and Neurospora,
including quite detailed genetic linkage maps. The sec-
ond half saw the rise of molecular biology: the elucida-
tion, in considerable detail, of the information pathway
that begins with the nucleotide sequence in DNA and
ends with the specification of the phenotypes of cells and
organisms. 

The determination of the complete nucleotide se-
quences of the human, mouse, and many bacterial and eu-
karyotic model organism genomes is the logical culmina-
tion of both molecular biology and classical genetics. Just
as the DNA structure transformed classical genetics into
a molecular science, the genomic sequences are trans-
forming molecular biology into an information science,
marking the beginning of a third era in the history of bi-
ology. In each case, the newer science is of necessity
firmly based in its predecessor, but thinking and research
become transformed both in style and substance; each era
adds a new perspective to our understanding of biology.

INTELLECTUAL ORIGINS OF GENOMICS 

The ideas underlying the science of genomics can be
traced back to the early years of molecular biology. The
first truly “genomic” paper was presented at the Cold
Spring Harbor Symposium in 1963; it summarized the re-
sults of a deliberate program to identify all the genes of
bacteriophage T4 (Epstein et al. 1964). The paper de-
scribed, in a general way, what each of the T4 genes does
for the organism. This program was based on the idea that
one might be able to obtain mutations in all the essential
T4 genes by isolating conditional-lethal mutations. Two
kinds of conditional-lethal mutations (chain-terminating
and temperature-sensitive) had recently been described;
strong arguments were made for the idea that either or
both of these kinds of mutations could be found in any es-
sential phage gene if one looked hard enough for them.
The T4 genes themselves were then defined and enumer-
ated genetically: The mutations were classified into genes
by complementation and recombination mapping using

their common conditional-lethal phenotypes. This was
clearly a lot of work, even for an organism expected to
have no more than about 100 genes. It thus seems worth
noting that, like modern genomics papers, Epstein et al.
(1964) was the result of an international collaboration
among several laboratories and had 10 authors (remark-
ably many, in 1963).

Figure 1 is a composite, consisting of an electron mi-
crograph of phage T4 on the left, and a diagram from Ep-
stein et al. (1964). The genes are shown in the order they
appeared on the circular T4 genetic linkage map, along
with an abbreviation or ideogram that describes the out-
comes of infections with mutant phages under nonper-
missive circumstances: D0 for no DNA synthesis, DA for
DNA synthesis arrest, MD for maturation defective, and
ideograms for the presence of heads, tails, unassembled
heads and tails, and various kinds of assembled, but de-
fective, phage particles. Updates of this figure served, for
many years, as the genome database for bacteriophage T4.
A similar genomics program was successfully carried out
with several other bacterial viruses as well, notably bacte-
riophages λ, P22, and φX174, and a few animal viruses
(e.g., polyoma, adenovirus, and herpesvirus). In each of
these cases, most (if not quite all) essential viral genes
were identified in advance of any sequencing, and their
biological roles were defined in at least a general way. 

Shortly after the appearance of Epstein et al. (1964),
two substantial efforts were undertaken to identify all the
genes of two free-living organisms (the yeast Saccha-
romyces cerevisiae and the nematode worm Caenorhab-
ditis elegans), despite the expectation that their genes
would number in the many thousands. Once again, gene
enumeration was to be via conditional-lethal mutations
and classical genetic methods (complementation and re-
combination mapping). These efforts, led by Leland
Hartwell and Sydney Brenner, respectively, also had sub-
stantial success well before the DNA sequence era
(Hartwell 1970, 1974, 1978; Brenner 1974). It was this
success that attracted a large and productive research
community of molecular biologists to the study of these
organisms. These active research communities and the
progress they made in biology made it logical, even in-
evitable, that these would be the model organisms whose
genomes would be sequenced first. 

As molecular sequences accumulated, it became clear
that the sequences and functions of most genes and pro-
teins are strongly conserved in evolution. Today, the find-
ings of the bacterial, yeast, worm, and other model or-
ganism research communities about individual genes and
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proteins are the basis for most of what is known about the
roles they play in the biology of all organisms, including
the human. This “grand unification” of biology is part of
the genomic perspective.

EXTRACTING BIOLOGICAL INFORMATION
FROM GENOME SEQUENCE

Even before the Human Genome Project had been or-
ganized, the need for suitable archives for the onrushing
flood of genomic data became obvious, as did the need
for ways to compare and display data in a manner useful
to biologists. Computation quickly became indispens-
able; thanks to the rapid pace of advance in the produc-
tivity of computers, computation per se has rarely if ever
been limiting in genomics. It was the provision of suitable
biological context for sequences and computed results
about sequences that became the challenge. At first, most
effort went into “primary annotation,” which includes
finding the open reading frames, splice junctions, homol-
ogy and synteny with other organisms, etc. Most of this
annotation today is being done essentially automatically
by an increasingly sophisticated and powerful set of com-
puter programs.

It soon became clear that if biologists were to have use-
ful access to the fruits of genomic sequencing, another
level of “biological” annotation would be necessary.
Databases were organized to meet this larger challenge,
ranging from the very basic and important archival se-
quence databases (NCBI, EBI, SwissProt, etc.) to the
more specialized organism-specific databases (SGD,
MGD, FlyBase, WormBase, etc.). Today, these have
grown into a veritable armamentarium, including many
more focused databases that catalog such things as se-
quence motifs or mutations in particular gene families.
These databases have already become indispensable to
working biologists of every kind. 

A considerable part of the challenge facing biological
annotators concerns nomenclature and language. The
classical methods for naming and describing the functions
of genes, proteins, protein assemblies, and even biological

processes themselves remain different for each species
and for each sub-field of biology, producing something of
a Tower of Babel. The genomic database organizations
recognized the need for a common language describing
the biology associated with genes and proteins, and
banded together to produce what is now called the “Gene
Ontology” (GO; this is not, in a strict sense, an ontology,
but the name has caught on nevertheless; Ashburner et al.
2000; Harris et al. 2004). GO, which is described else-
where in this volume (Ashburner et al.), emerged as a lim-
ited vocabulary organized in a set of directed acyclic
graphs that represent the “biological processes,” “molecu-
lar activities,” and “subcellular locations” associated with
genes and proteins of an organism. GO has rapidly be-
come popular with genome biologists, as it facilitates bio-
logical annotation in a way that allows, among other
things, computational connections among the functional
annotations of orthologs and makes it possible to begin to
assess quantitatively the significance, in the context of bi-
ological function, of the coexpression of two genes (see,
e.g., Raychaudhuri et al. 2003; Troyanskaya et al. 2003). 

ASSESSING GENE EXPRESSION
GENOME-WIDE

Complete genomic sequences have provided biologists
with a finite universe of genes and proteins for each or-
ganism. For the first time, it has become possible to de-
sign experiments that interrogate every gene for its activ-
ity in a biological process. It is this kind of
comprehensive experiment that provides a global per-
spective and that we think of as “genomic.” The genomic
technology that has advanced the most rapidly in recent
years is DNA microarray hybridization. Many variants of
this technology have come into use. All have in common
the intent to measure, by hybridization, the relative
amounts of nucleic acid in a sample corresponding to
each gene. As with any method, there are limitations in
practice, some of which apply to all the technologies, and
others that affect some methods more than others; we do
not discuss further the technology per se; instead, the
reader is directed to a collection of recent reviews (Brown
and Botstein 1999; Nature Genetics [supplement] 2002).
Despite these limitations, DNA microarray technology
has provided a wide-ranging and comprehensive view of
gene expression patterns both in experimental model sys-
tems and in normal and diseased human tissues. DNA mi-
croarrays have also been used to study, genome-wide,
changes in DNA copy number, once again in both model
systems and human tissues. 

As with DNA sequences themselves, the value of DNA
microarray analysis depends on the ability to connect re-
sults with biology. The large numbers of measurements
represented in a single array (typically tens of thousands)
require considerable computation not only to recover and
organize the data, but also to present them in a form that is
simultaneously comprehensive and intuitive. In 1998,
Eisen et al. described a system for analysis and display of
microarray data, many features of which have come into
common use. The most important and general feature is
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Figure 1. (A) Blectron micrograph of the bacteriophage T4. (B)
Summary of the T4 genes in linkage map order with ideograms
and abbreviations indicating mutant phenotypes of conditional-
lethal alleles. (A, Reprinted, with permission, from Büchen-Os-
mond 2003.)
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sion of an uncharacterized gene in a cluster of coex-
pressed genes has become one of the most common leads
to characterization of such a gene’s role in the cell. Third,
it allows the comparison (and, under the right circum-
stances, even the amalgamation) of data from many dif-
ferent kinds of experiments. For example, the Eisen et al.
analysis and display system facilitated the discovery that
the so-called “proliferation cluster” observed in a number
of studies of tumors consists of genes periodically ex-
pressed in synchronized HeLa cells (Whitfield et al.
2002). The ability to usefully compare diverse data, col-
lected by different groups under different conditions, is
an important property that microarray data share with
molecular sequence data. The data have cumulative
value, which makes it important that all data, not just the
subsets used to make a point in a paper, should be made
freely available at the time of publication. 

MOLECULAR PORTRAITS OF CELLS,
TISSUES, AND TUMORS

DNA microarrays that contain many thousands of dif-
ferent human cDNA sequences can be used to assess pat-
terns of gene expression, producing a highly detailed and
nuanced map of gene expression across the genome. Each
individual microarray shows the relative abundance of
transcripts of each of the genes represented on the array,
and thereby gives a characteristic and nuanced picture of
the biological state of the cells or tissues from which the
mRNA was extracted. After application of clustering al-
gorithms, the patterns of a number of microarrays can be
assessed together, not only visually, but also quantita-
tively, using a variety of statistical methods and computer
algorithms that relate gene expression patterns to each
other and to external information, including the identities
of the cells or tissues, their environment, their response to
previously applied stimuli, or disease state. An example
of such a map is shown in Figure 3, in which the patterns
of gene expression of about 6000 different human genes
in 440 different cell lines and tissues are shown together,
after the data had been clustered in both the gene and ar-
ray dimension. It is easy to discern visually that similar
cell types and tissues, collected under similar conditions,
display similar patterns of gene expression. Likewise, de-
spite the extreme diversity of cell and tissue types and en-
vironmental conditions, it is easy to discern groups of
genes that appear regularly to be expressed similarly over
the entire gamut of cell type and condition. 

What can be learned from clustering of gene expression
patterns of large numbers of cell and tissue samples? First,
as pointed out above, one can obtain, for relatively un-
characterized genes, quite specific suggestions regarding
their role in the biology of the tissue or organism. Second,
clustering of arrays according to the patterns of gene ex-
pression allows inferences to be made about the biology of
the cells from which the RNA was drawn. A good exam-
ple of this was the demonstration of substantial and repro-
ducible biological differences among apparently similar
cell types (e.g., fibroblasts or endothelial cells), depending
on their anatomical site of origin (Chang et al. 2002; Chi

the method of display (adapted from Weinstein et al.
1997): Tables of suitably analyzed gene expression values
are presented with cells colored according to the magni-
tude of the difference between the value in the cell and the
mean or median for that gene in the group of arrays being
compared. Generally, each row of the table represents a
single gene, and each column a single array. Much useful
analysis can be performed, without removal of any data,
just by manipulating the order of the rows and columns ac-
cording to an analysis scheme (usually some form of clus-
tering), after which patterns of gene expression become
manifest as patches of color. Viewing the entire colored
table, one can see an overview of patterns consisting of lit-
erally millions of individual gene expression values. One
can also zoom in on portions of the pattern. As shown in
Figure 2, the gene names are listed next to each row along
with summary descriptions of what is known about the
genes (e.g., GO annotations). At this level, biologists can
often not only see relationships among the genes in their
experiments, but also begin to make inferences based on
what is held in common by the annotations for the genes
clustered together by the analysis. A Windows implemen-
tation (TreeView) and an enhanced platform-independent
version (JavaTreeView) of this display system are freely
available from genome-www.stanford.edu.

Several points are worth emphasizing about the practi-
cal advantages of this style of analysis and display. First,
and probably most important, the analyis preserves the
comprehensive nature of experiments intended to interro-
gate the entire genome. In this way, it provides and main-
tains a genomic perspective. The experimenter gets an
overview, through the patterns of color, of all the data as
analysis proceeds. Second, because data are not removed,
it facilitates the unsupervised discovery of relationships
of the patterns of gene expression between uncharacter-
ized genes and those that have been well-studied. Inclu-

Figure 2. Display of relative degrees of gene expression in a set
of DNA microarray experiments. A table of log2 of ratios of
gene expression between an experimental sample and (usually)
a common reference is colored according to the relationship of
each cell in a row to the median (or mean) for that row. Increas-
ing intensity of red indicates higher ratios, and increasing inten-
sity of green indicates lower ratios; often yellow and blue are
substituted for red and green, respectively (inset). The display is
connected to biology by the text annotations of gene name and
abbreviations of appropriate GO terms. For more detail, see
Eisen et al. (1998) and Ashburner et al. (2000). 



et al. 2003). This conclusion emerged when gene expres-
sion patterns of fibroblast or endothelial cell cultures from
several individuals were compared by cluster analysis.
The patterns for cells derived from similar anatomical
sites but from different individuals clustered tightly to-
gether, indicating very little interindividual variation com-
pared to the variation found between similar cell cultures
derived from different parts of the human body. 

Similarly strong biological inferences could be drawn
from the analysis of gene expression profiles of human
tumors. A large set of arrays representing the patterns of
expression of about 6000 genes in a variety of diverse,
crudely dissected tumors is shown in Figure 4. Once
again, the clustering was done in both the gene and array
dimension. Inspection of the figure shows that tumors of
similar tissue of origin, but from many different patients,
cluster together, indicating that tumors of each type (e.g.,
breast) are more similar in pattern of gene expression to
each other than any of them is to another tumor type (e.g.,
ovarian or liver). This is despite the fact that these tumors
consist of many different cell types, each of which con-
tributes characteristic patterns of gene expression to the
overall portrait of the tumor (for a fuller discussion of this
point, see Perou et al. 1999, 2000). 

Gene expression patterns thus appear to reflect accu-
rately, as might have been expected, the biological differ-
ences among cell types and tumor tissues. Considering
the many thousands of genes whose expression varies
among the various cell and tissue tumor types, and the rel-
atively small variation in interindividual gene expression
for each different cell type and tissue, these molecular
portraits may represent the best and most nuanced dis-
tinctions that can today be made among human cells and
tissues. Molecular profiles thus provide a genomic per-
spective, faithfully representing, in considerable detail,
the genomic contribution to cell and tissue phenotype,
identity, and developmental history. 

TUMOR SUBTYPES BASED ON
MOLECULAR PORTRAITS

Gene expression patterns also appear to reflect the ge-
nomic contribution to the development of tumors, consis-
tent with everything that is known about the genetic
events that underlie tumor initiation, progression, and
metastasis. It therefore seemed particularly significant
that among the portraits of tumors of similar origin and
pathological diagnosis (e.g., breast tumors), there ap-
peared, based on the clustering patterns, clear indications
of distinguishable subtypes. 
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Figure 3. Cluster diagram as described in Fig. 2 that includes
gene expression data from more than 400 cell and tissue samples
whose gene expression was measured relative to a common ref-
erence; about 6000 of the most variably expressed genes are rep-
resented. (This figure was made by Pat Brown and Mike Eisen
and includes data collected by Max Diehn, Xin Chen, Jon Pol-
lack, Chuck Perou, Therese Sorlie, Mitch Garber, Marci
Schaner, Matt van de Rijn, Gavin Sherlock, and Mike Fero.)

Figure 4. Cluster diagram as described in Fig. 2 that includes
samples of about 500 diverse tumors relative to a common ref-
erence; about 6000 of the most variably expressed genes are rep-
resented. Source of the data is the same as in Fig. 3. 



Figure 5 (Sørlie et al. 2003) shows the molecular por-
traits of breast tumors derived from 115 different patients.
From the dendrogram (Fig. 5B), one can see that breast tu-
mors are very diverse, especially when compared with the
patterns of three typical normal breast samples (shown in
black). Similarly wide diversity in tumor profiles and rel-
atively minimal variation in normal tissue profiles have
been found not only for breast cancers (Perou et al. 2000;
Sørlie et al. 2001, 2003), but also for lung (Garber et al.
2001), liver (Chen et al. 2002), and gastric (Leung et al.
2002) cancers. Another common feature (not shown) is
that tumor samples from the same breast cancer patient,

either by repeated surgical sampling or from lymph node
metastases, tend to have profiles very similar to each other
(Perou et al. 2000; Sørlie et al. 2001, 2003); similar results
were obtained in our studies of lung and liver tumors (Gar-
ber et al. 2001; Chen et al. 2002). This property is useful
for defining subsets of genes whose expression patterns
contain the most information for distinguishing subtypes,
as was done for Figure 5. 

The simplest interpretation of the dendrogram in Fig-
ure 5 is to suppose that there are five subtypes corre-
sponding to the top-level nodes of the dendrogram. The
samples whose patterns are best correlated in each sub-
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Figure 5. Cluster analysis of 115 breast tumors. (A) Representation of the entire data set clustered according to the expression of the
534 genes that vary least in repeated samples from the same individual and most across all the samples. (B) Dendrogram showing the
clustering of the tumor samples into five groups, color coded as indicated. Black indicates the three normal breast samples. C,D,E,F,
and G show the clusters of genes whose expression is characteristic of the ERBB2+, luminal B, basal, normal-like, and luminal A
subtypes, respectively. Scale bar shows the fold difference relative to the median for each gene. (Reprinted, with permission, from
Sørlie et al. 2003.)



group are color-coded. Each subtype has been named ac-
cording to previous practice (Perou et al. 2000, Sørlie et
al. 2001). The “luminal” tumor subtypes express genes
(e.g., cytokeratins 5 and 17) normally expressed in the ep-
ithelial cells that normally line the lumen of breast,
whereas the “basal” tumor subtypes express genes (e.g.,
cytokeratins 8 and 18) normally expressed by the basal
epithelial cells that normally are located one or more cell
diameters away from the lumen (Perou et al. 2000; van de
Rijn et al. 2002). This suggests that the origins of luminal
and basal tumors are somehow related to the differences
between the development of normal basal and luminal ep-
ithelial cell types in the breast. 

Three additional lines of evidence support the biologi-
cal significance of at least some of the distinctions among
the subtypes. First, the several subtypes are associated
with different disease severity. Second, some of the sub-
type distinctions, and their different clinical conse-
quences, are reproducible in completely separate cohorts
of patients (Sørlie et al. 2003). Third, the tumors of pa-
tients genetically predisposed to breast cancer appear al-
ways to be of the basal subtype, suggesting this subtype
is biologically distinct from the others. 

Figure 6 shows disease outcomes for women with dif-
ferent breast tumor subtypes. Data for two separate pa-
tient cohorts, differing in age at onset and methods of
treatment, are shown. In both cohorts the relationship of
subtype to clinical course is similar. The most prominent
features of the Kaplan-Meier curves are that women with
tumors of the luminal A subtype have markedly less se-
vere outcomes than do those with the basal subtype. In
both cohorts, women with luminal B subtype tumors ap-
pear to have disease with intermediate severity. These re-
sults are in considerable agreement with previous studies
relating expression of particular individual genes or pro-
teins (e.g., estrogen receptor or Her2/neu) to disease out-
come (cf. Henson et al. 1995; Allred et al. 1998). 

Our ability to discern a relatively small number of bio-
logically coherent breast tumor subtypes suggests a sys-
tematic explanation of such results: The different sub-
types have many correlated differences in gene
expression, and the differences in outcome are related to
the difference in subtype, and not generally the expres-
sion of individual genes or the presence or absence of par-
ticular proteins. The success in correlating, on a large
scale (more than 600 patients), the presence of cytoker-
atin 17 (by immunohistochemistry) with outcome under-
scores this point (van de Rijn et al. 2002). 

As indicated above, many different tumor types have
been studied using genome-wide gene expression profil-
ing. In our experience, subtypes are more often dis-
cernible in such studies than not: We have found evidence
for subtypes in diffuse large-cell lymphomas (Alizadeh et
al. 2000); lung (Garber et al. (2001), liver (Chen et al.
2002), gastric (Chen et al. 2003), soft tissue (Nielsen et al.
2002), ovarian (Schaner et al. 2003), and follicular lym-
phoma (Bohen et al. 2003). Interestingly, in the case of
follicular lymphoma, the subtypes appeared to have di-
chotomous responses to treatment with rituximab, pro-
viding a somewhat different line of evidence for the bio-

logical and clinical significance of the distinction be-
tween the subtypes of follicular lymphoma.

GENOMICS AND BIOLOGICAL
PERSPECTIVE

The availability of genomic sequences has changed the
way in which we think about biology, even as it has
changed the way in which we do research. Where once
we were limited to studies applicable directly only to a
limited set of organisms, we now can make inferences
that apply, with high likelihood, to most organisms;
where once we were limited to a view, in an experiment,
of only a few genes and/or gene products, we are begin-
ning to be able to see our experimental results in the con-
text of all the genes and gene products.

The genome sequences have resulted in a “grand unifi-
cation” of biology based on molecular sequence conser-
vation. Molecular sequence comparisons have all but
ended the intellectual fragmentation along taxonomic
lines that has been a feature of the biological sciences for
centuries. It is now routine to make detailed studies of
common ancestry at the whole-genome level, at the level
of individual gene and protein sequences, and even at the
level of oligonucleotide-length sequence motifs. Results
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Figure 6. Kaplan-Meier analysis of disease outcome in two pa-
tient cohorts (from Sørlie et al. 2003). Color codes are the same
as in Fig. 5. (A) Data from van’t Veer et al. (2002) showing time
to metastasis for 97 sporadic cases. (B) Data from Sørlie et al.
(2003) showing overall survival for 72 patients with locally ad-
vanced breast cancer. The normal-like class was omitted from
this analysis.



from such studies have facilitated and stimulated the de-
velopment of limited vocabularies and a common lan-
guage about biological functions and relationships (e.g.,
GO) that allows information in experimentally tractable
systems to be used effectively in understanding, and de-
vising experimental tests of that understanding, under
less tractable circumstances, including humans and hu-
man disease. 

The genome sequences themselves have made possible
comprehensive, genome-wide experimentation where
previously only a few genes and proteins could be studied
simultaneously. The most advanced of these technologies
are the genome-wide gene expression techniques, but oth-
ers, such as the production of comprehensive sets of dele-
tion (or “knockout”) mutations in all genes (Winzeler et
al. 1999; Giaever et al. 2002), comprehensive sets of fluo-
rescently labeled proteins in vivo (Ghaemmaghami et al.
2003), comprehensive two-hybrid protein interaction
screens (Uetz et al. 2000), and genome-wide synthetic
lethality tests (Tong et al. 2001) are coming into use. Such
methods are qualitatively different because they provide
relatively complete information in context. This context is
causing a new appreciation of the global consequences of
phenomena where only the behavior of a few genes had
been examined before. Taking a few very basic examples
just from our own experience, this approach expanded
severalfold the number of known cell-cycle-regulated
genes in yeast (Spellman et al. 1998) and animal cells
(Whitfield et al. 2002), as well as the stress response genes
in yeast (Gasch et al. 2000, 2001). 

The context provided by genomics has stimulated great
interest in understanding globally interactions among
genes and proteins. It is, for example, routine in gene ex-
pression studies to find genes and proteins that interact or
participate in a process or pathway simply because they
show characteristic coexpression with the other genes
and proteins involved under many different conditions.
New fields (called integrative genomics or system biol-
ogy) are emerging whose explicit goal is to understand bi-
ological function and regulation in context, capitalizing
on the new perspective and technology provided by the
genome sequences.

The study of molecular portraits of tumors provides a
good illustration of the change in perspective provided by
the genomic view. It was difficult to distinguish what turn
out to be reproducible and robust subtypes of tumors on
the basis of expression of one or a few genes or proteins.
Only when it became possible to study in parallel the ex-
pression of thousands of genes was it possible to see these
subtypes. Instead of thinking of each new molecular
marker as a central actor in tumorigenesis, progression, or
metastasis, one can now see that there may be hundreds
of genes with the same expression patterns. Similarly,
only by following many genes at once could one distin-
guish differences in apparently normal fibroblasts or en-
dothelial cells based on their anatomical origin. It is the
perspective provided by the still novel ability to study and
appreciate biological phenomena in a global context that
will characterize biological thinking and research for
years to come. 
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