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To understand the dynamics of transcriptional response to chang-
ing environments, well defined, easily controlled, and short-term
perturbation experiments were undertaken. We subjected steady-
state cultures of Saccharomyces cerevisiae in chemostats growing
on limiting galactose to two different size pulses of glucose, well
known to be a preferred carbon source. Although these pulses
were not large enough to change growth rates or cell size, �25%
of the genes changed their expression at least 2-fold. Using DNA
microarrays to estimate mRNA abundance, we found a number of
distinguishable patterns of transcriptional response among the
many genes whose expression changed. Many of these genes were
already known to be regulated by particular transcription factors;
we estimated five potentially relevant transcription factor activi-
ties from the observed changes in gene expression (i.e., Mig1p,
Gal4p, Cat8p, Rgt1p, Adr1p, and Rcs1p). With these estimates, for
two regulatory circuits involving interaction among multiple reg-
ulators we could generate dynamical models that quantitatively
account for the observed transcriptional responses to the transient
perturbations.

regulatory dynamics � steady-state growth � transcription factor
interactions

Yeast has evolved to respond rapidly and effectively to
fluctuations in temperature, nutrients, and other environ-

mental changes. When environmental conditions change
abruptly, cells must rapidly adjust their genomic expression
program to adapt to the new conditions. Most environmental
perturbations studied to date are complex and appear to provoke
multiple regulatory systems simultaneously; Gasch et al. (1)
found thousands of genes affected, directly or indirectly, by a
great variety of stresses, including such things as starvation,
oxidative stress, and heat shock. Furthermore, long-term per-
turbations, such as introduction of mutations or shifts of medium
(2, 3), are inevitably complicated by long-term adaptations as
well as short-term responses.

We developed an experimental design intended to focus on
the immediate response to environmental change, by making
very small and specific perturbations to an otherwise rigorously
controlled environment. Cultures growing at steady state in
galactose-limited chemostats were subjected to pulses of added
glucose, well known to be a preferred source of carbon and
energy (4, 5). A single bolus of glucose was added to the growth
vessel, and the concentration was allowed to fall naturally by the
combination of the constant dilution characteristic of the che-
mostat and metabolism by the cells. Two sizes of pulse (0.2 or 2.0
g�liter) were administered, so that we could observe a kind of
‘‘dose–response’’ to the same perturbation. The perturbations
were small enough to prevent noticeable growth rate alteration
and other major physiological changes; however, they proved
sufficient to provoke substantial changes in transcript levels. By
pulsing with glucose, a metabolite expected to be preferentially
consumed by the cells, we expected to capture, over time, two
opposite events: response to the addition of the preferred
metabolite and then to its disappearance over time.

The cellular response, in terms of transcriptional control, can
be represented by the transcription factor activity (TFA) (6, 7).
Transcription factors (TFs) become active through series of
signal transduction events triggered by extracellular or intercel-
lular metabolites. Activation by translocation, phosphorylation,
ligand binding, or other biochemical modifications renders the
TF capable of DNA binding and results in gene expression.
Direct measurement of TFA profiles is not usually possible;
therefore, we treated them as intrinsic (hidden) state variables.
Global methods for TFA estimation (8–10) require assumptions
of steady-state mRNA production and constant mRNA degra-
dation rate, which do not hold in our case. Therefore, we
estimated each TFA locally using mRNA levels of sets of
downstream genes thought to be directly regulated by the
factor(s). In our analysis we also were able to combine TFA
profiles to capture combinatorial regulation of the transcripts.

Results
Response to Glucose Pulses. When glucose was added to the
cultures growing at steady state in limiting galactose, its con-
centration immediately began to fall at a rate substantially higher
than the rate of dilution (Fig. 1), as expected if the cells
immediately began to metabolize it. The observed t1/2 was three
times shorter than that predicted for dilution alone for the
high-glucose pulse and approximately nine times shorter for the
low-glucose pulse. During each pulse, ethanol concentration
increased until the glucose supply was exhausted, �45 min for
the low pulse and 150 min for the high pulse. No significant
change was found in cell number and size (�10%), confirming

Conflict of interest statement: No conflicts declared.

Abbreviations: TF, transcription factor; TFA, TF activity.

‡To whom correspondence should be addressed. E-mail: botstein@princeton.edu.

© 2005 by The National Academy of Sciences of the USA

Fig. 1. Glucose (E) and ethanol (‚) concentrations observed after the 0.2
g�liter (a) and 2.0 g�liter (b) pulses of glucose. The glucose concentrations
predicted solely from dilution in the chemostat are shown by the solid line.
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the expectation that these perturbations were small enough to
prevent major changes in cell physiology.

General Transcriptional Response to the Pulses. Analysis of the
genome-wide pattern of transcription on DNA microarrays (for
the complete microarray data see Materials and Methods; see also
Supporting Methods, Table 1, and Fig. 7, which are published as
supporting information on the PNAS web site) showed that 25%
of the yeast genes showed at least a 2-fold change in mRNA
levels during the 3 h after the pulse of glucose (i.e., approxi-
mately one generation’s time). We used GO TERM FINDER (11)
to assign the biological processes associated with the responding
genes. The main groups of responders are involved in hexose
transport, galactose metabolism, ribosome biosynthesis and as-
sembly, hexose metabolism, tricarboxylic acid cycle, energy
reserve metabolism, glucose metabolism, gluconeogenesis, and
siderophore transport. Most responding genes were previously

observed to be induced during the diauxic shift in batch cultures
growing in glucose (12). This shift, which occurs as glucose is
exhausted, triggered a change of at least 2-fold in �27% of the
genes, surprisingly similar to the result found here for just short
pulses of glucose.

Fig. 2 shows representative mRNA profiles of particular
relevance, including the GAL genes themselves (Fig. 2a), in both
the low- and high-glucose pulses. The observed fall in the glucose
concentration is plotted for comparison. Surveying the kinetics
of responses of all these genes to the addition of glucose, we
could classify several types of transcriptional response in both
the high- and low-glucose pulses.

Burst-Like Response. mRNA levels changed immediately in re-
sponse to the pulse and then rebounded very quickly. Burst-like
response genes include most of the responding genes, including
the tricarboxylic acid cycle genes and the ribosomal genes (Fig.

Fig. 2. Gene expression patterns of GAL genes (a), tricarboxylic acid cycle genes (b), glucose transporters (c), gluconeogenesis (d), genes with bidirectional
response (e), and iron homeostasis genes ( f). The left side of each plot shows the low-glucose pulse, and the right side shows the high-glucose pulse. The graphs
above the panels are area plots of glucose concentration: low-glucose (0.2 g�liter) pulses (I) and high-glucose (2.0 g�liter) pulses (II).
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2b). The GAL genes appear to fall into this class (Fig. 2a). One
remarkable feature of all of the profiles is that the amplitude of
the immediate responses differed only minimally between the
high- and low-glucose pulses, although there were substantial
differences in duration in some of the profiles.

Lasting Response. Immediate changes in mRNA levels lasted until
well after the glucose was exhausted. Lasting response genes
included low-affinity glucose transporters (HXT2 and HXT4)
(Fig. 2c), glycolysis genes (ENO1, ENO2, and CDC19), and many
gluconeogenesis genes (Fig. 2d).

Bidirectional Response. mRNA levels for this class first dipped
below the starting level and then rose to a higher peak. Among
these genes were MTH1, HXK1, HXK2, and SUC2 (Fig. 2e). The
transcripts’ amplitudes were not significantly different between
the two glucose pulses, but the duration was higher with the
higher pulse. There are several other genes involved in carbon
metabolism that share the same expression pattern as SUC2:
UGP1, GSY1, TPS1, and HXT17.

Slow Repression. mRNA levels slowly decreased until glucose was
exhausted. This profile included many iron ion homeostasis
genes (Fig. 2f ). Their minimum level was achieved at t � 120 min
for the high-glucose pulse, as compared with all other repressed
transcripts, which reached minima after less than t � 20 min. The
pattern is much less clear (and may not really have been
achieved) in the low-glucose pulse, with the exception of the
FIT2 gene, which is involved in siderophore retention on the cell
surface and thus probably belongs to the iron homeostasis group.

Diverse Profiles for Glucose Transporters. The genes encoding
glucose transporters Hxt1p, Hxt2p, and Hxt4p were promptly
expressed after glucose addition (Fig. 2c), but the mRNA level

for HXT1 began to fall after a short time. The HXT7 mRNA level
was the last to rise, with time to half max of 60 min in the
high-glucose pulse, compared with �7 min for the others. The
amplitudes are again not significantly different between the two
pulses. The activation concentration of the various glucose
transporters is correlated well with their previously published
affinities for glucose (13, 14). These results are entirely consis-
tent with what has been published about the regulation of these
glucose transporter genes. The HXT1, HXT2, and HXT4 genes
are regulated by Rgt1p (15–17), which accounts for their fast and
lasting response to glucose. Rgt1p is a repressor, which also acts
as an activator of HXT1 at high glucose levels; this explains the
earlier decrease in HXT1 mRNA, when Rgt1p no longer acti-
vates it. The basis of HXT7 regulation is unknown.

TFAs. To model the regulatory mechanism that generates the
observed responses, we plotted a map of the known glucose
regulatory events based on the literature (Fig. 3) and estimated
the TFAs in arbitrary units as a function of time (Fig. 4) for the
TFs involved (see Materials and Methods). The rate of initial
change in activity was observed to be the same for all TFs except
Rcs1p�Aft1p. Regardless of the regulatory role, activators
(Gal4p, Cat8p, and Adr1p) or repressors (Mig1p and Rgt1p),
and the direction of the change in activity [increasing for Mig1p
or decreasing (the others)], the t1/2 of the response is �8 min for
both high pulses (Fig. 4 Inset) and low pulses (data not shown).
Mig1p, Adr1p, and Gal4p have similar profiles of a short-term
change in activity, whereas Cat8p and Rgt1p activities are
prolonged. Rcs1p has a slower initial response, but it has a
derepression rate similar to those of Rgt1p and Cat8p. With
these TFA values in hand, we were able to model some of the
responses to the glucose pulses.

Bidirectional Response Model for Genes Controlled by Rgt1p and
Mig1p. In our data, HXK2 and MTH1 (Fig. 2e) displayed similar
transcript patterns: for the high pulse, a sharp decrease until t �

Fig. 3. Mechanism of glucose repression and induction. Glucose is transported into the cell by Hxt transporters with diverse affinities. Intracellular glucose is
converted to glucose-6-phosphate primarily by Hxk2p and then fermented to ethanol and CO2 (5). Snf1p protein kinase is one of the main players in glucose
repression and the induction pathway; it regulates the activities of TFs of glucose repression genes (Mig1p) and gluconeogenesis (Cat8p-Sip4p and Adr1p). In
the presence of glucose, Snf1 is deactivated by the phosphatase, Glc7p-Reg1p, in a Hxk2p-dependent manner (15). Once inhibition by Snf1p is released, Mig1p
is phosphorylated, enters the nucleus, and represses the expression of alternative carbon source utilization genes (e.g., GAL4, SUC2, SNF3, and gluconeogenesis
TF genes CAT8 and SIP5) (5). Iron uptake and transport genes are induced throughout Snf1p�Snf4p and the TF Rcs1p, independent of iron starvation (22). A
separate sensing pathway mediates glucose induction of mainly glucose transporter genes. Extracellular glucose binds to glucose receptors Snf3p or Rgt2p (with
high and low affinities, respectively) to generate a signal that inactivates the transcriptional receptor Rgt1p. This signal induces the HXT genes, MIG2, and its
own activators, STD1 and MTH1 (29, 16). The glucose signal inhibits Rgt1p-mediated expression by stimulating the degradation of Mth1p and Std1p (28). The
two pathways, Snf1-Mig1 and Rgt1, are interconnected in both protein signaling and transcriptional levels mainly throughout Mth1p and Hxk2p, which are
regulated by both Mig1p and Rgt1p (18, 30) and have a signaling role in the pathways. In addition, Mig1p regulates one of the sensors of the Rgt1 pathway,
Snf3p, where Rgt1p regulates the transporters that bring the Snf1 pathway into action. Another glucose sensing and signaling mechanism, not shown here, is
responsible for activation of ribosomal and glycolysis genes and repression of glycogen, trehalose, and stress genes through Gpr1p, cAMP, and PKA (4).
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10 min, followed by a gradual increase to higher than initial
levels, reaching their peak when glucose was depleted and then
dropping down. For the low pulse the same pattern appeared,
with a compressed time scale. Two repressors, Mig1p and Rgt1p,
which are oppositely responsive to glucose (Fig. 5a), have been
reported to regulate both genes (15, 18). When glucose levels
increase, Rgt1p repression is relieved and repression by Mig1p
is enhanced.

The TFA plot (Fig. 5b) reveals the different thresholds of the
repressors, with Rgt1p at �0.03 g�liter and Mig1p at �0.7
g�liter, so that, when the glucose pulse begins, there is Mig1p-
dependent repression, which is relieved when glucose concen-
tration drops below 0.7; then, when it drops below 0.03 g�liter,
Rgt1p is activated to reestablish repression. As described in
Materials and Methods, a quantitative model of regulation of the
mRNA level for the HXK2 and MTH1 genes by combined TFs
was generated. As shown in Fig. 5c, the model succeeded in
producing the observed bidirectional mRNA profile, including
amplitude and duration, for both the low-glucose and high-
glucose pulses.

Lasting Response Model for Genes Regulated by Cat8p, Mig1p, and the
Snf1p Kinase. The lasting response genes that are regulated
under the transcriptional activator Cat8p were used to calcu-
late its active profile; the CAT8 gene itself is under Mig1p
regulation (19) and was used to calculate active Mig1p’s
profile. Both Mig1p and Cat8p receive signal from glucose

throughout Snf1p (19) in a feed-forward manner. High glucose
initiates the repression of CAT8 by Mig1p (decreasing the
number of activator molecules) and also directly decreases the
activity of Cat8p itself (Fig. 6a).

The TFA curves (Fig. 6b) show that Mig1p and Cat8p have
different glucose (or Snf1p) thresholds; Cat8p’s final threshold
is at an �10-fold lower concentration than that of Mig1p (from
the high pulse data), indicating the short-term Mig1p activity.
Therefore, the lasting response of Cat8p might be attributed to
Snf1p and not to Mig1p. Although Mig1p’s activity is also
regulated by Snf1p (20, 21), it has different kinetics. This
finding could be explained either by different thresholds or by
different Snf1p complexes involved in each interaction. The
pattern of Snf1p signaling activity is estimated by substituting
Mig1p activity from that of Cat8p; it correlates well with the
pattern of Rcs1p transcriptional activity, downstream of
Snf1p (22).

Comparing the TFAs for the Two Pulses. Rgt1p’s activities have
similar dependency on the concentration of glucose for the two
pulses (Fig. 5b); Cat8p displays similar behavior (data not
shown). However, Mig1p’s activity does not depend linearly on
the glucose level; its thresholds are different for the different
pulses (�0.8 g�liter for the high pulse and �0.08 g�liter for the
low pulse) (Fig. 5b). In the glucose ranges that we tested (both
commonly regarded as ‘‘low-glucose’’) it seems to act as a digital
pulse, with the same amplitude and width, regardless of glucose
level. Direct measurements of Mig1p localization at different
glycolytic rates (23) support this interpretation.

Fig. 4. The estimated TFAs with the 2 g�liter glucose pulse, 1-Mig1 (blue),
Gal4 (green), Cat8 (red), Rgt1 (pink), Adr1 (cyan), and Rcs1 (black). (Inset) A
zoom-in to the initial time points.

Fig. 5. Bidirectional response model. (a) Mig1-Rgt1 circuits. (b) The estimated TFA during derepression. Blue, Mig1p; pink, Rgt1p; solid line, high pulse; dashed
line, low pulse. (Inset) The combined factors pattern of gene activation. (c) The expression of MTH1 (green) and HXK2 (red) genes, measured (solid line) and
model-predicted (dashed line)

Fig. 6. Lasting response. (a) Mig1–Cat8 circuit. (b) The estimated active TFs
during derepression after a high-glucose pulse. Blue, Mig1p; red, Cat8p; black
solid line, Rcs1p; black dashed line, predicted Snf1p activity.
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Discussion
We designed our experiment in the hope that the stimulus and
response could be observed cleanly in a procedure that mini-
mizes the introduction of confounding physiological changes. To
this end, we arranged for the cells to be in a steady state, so that
gene expression pattern and metabolic f luxes could be safely
assumed to be constant and any changes could be attributable to
the perturbation. The addition of a small amount of glucose,
although a major factor for the cell’s metabolism, as indicated by
the immediate responses of so many genes, nevertheless did not
alter the cell growth rate and size.

Thus, we are reasonably confident that all responses that we
observe are, directly or indirectly, consequences of just the brief
glucose pulse and not any other component in the system.
Moreover, the small stimulation allowed us to capture interesting
patterns of regulation that could be masked with high�saturated
doses, and, by following the kinetics, new correlations in gene
expression could be revealed. Cells grown in chemostat are
‘‘poor but not starving’’ (24, 25), and, indeed, no explicitly
starvation-related and stress-response genes were activated (ex-
cept for ‘‘stress’’ genes that were previously known to be induced
by glucose-related pathways).

Most responding genes have a burst-like expression pattern,
relatively uncorrelated with the measured glucose and ethanol
concentrations and consumption rates. Even a low added-
glucose level triggered the subsequent transcriptional re-
sponses, although the duration sometimes was truncated rel-
ative to a longer pulse. One of the TFs involved, Mig1p, also
ref lects this behavior, because it seems to act as a digital pulse.
The initial response to very low levels of glucose added to the
culture imply the high importance of fast adaptation to it. We
suggest that there is more than one discrete wave of transcrip-
tional response to glucose appearance, where each wave
‘‘reevaluates’’ the level of glucose, and maybe also its deriv-
atives, and responds appropriately. Similar discrete regulation
was found with responses to stress with the SOS DNA repair
system in Escherichia coli (26) and the human p53-mdm2 (27).
To test this suggestion, analysis of single-cell response with
high temporal resolution is required.

Bidirectional response is generated by repression of two TFs
with different activity thresholds (Mig1p and Rgt1p). Their
downstream genes, HXK2 and MTH1 (28–30), participate in the
regulation of two of the glucose pathways (HXK2 may also have
a role in the cAMP-related pathway). They are regulated in
opposing directions by glucose, with low expression at high and
at very low glucose levels and high expression at an intermediate
level, which implies adaptivity. For Mth1p, which is a sensor for
glucose, protein production is the mean to achieve adaptivity,
because the protein is degraded in the presence of glucose. The
high gene expression at intermediate glucose levels increases its
sensitivity to glucose at that range.

The expression pattern of Mth1 and Hxk2 was captured by
using a simple model. We suggest that contradicting signals also
regulate SUC2, HXK1, and the additional genes with similar
expression patterns.

Iron ion homeostasis genes respond to glucose signals through
Snf1p regardless of iron deprivation signals. We suggest that this
signaling pathway is an evolutionary adaptation to successive
cellular events; i.e., if a consequence of glucose addition is the
impending depletion of Fe ions, a cell that would start expressing
the iron homeostasis genes once glucose is added will have an
advantage over a cell that will do that only when iron is depleted.
This kind of anticipatory coordinated expression could explain
the large number of mRNAs changing in response to glucose
throughout glucose signaling pathways.

The sharp drop in mRNA levels of the repressed genes is due
to a high degradation rate. The mRNA’s half-lives represent-

ing degradation under glucose exponential growth (31) are
�3-fold higher than those detected in our experiments. It was
recently reported that feeding glucose to cells growing on
other carbon sources increases the mRNA degradation rate for
a few genes (JEN1 and FBP1) (32). It is possible that the same
phenomenon occurs with the larger set of genes we see in our
experiments.

To conclude, we believe that experiments designed around
short perturbations of cells growing in steady state may be of
general use in understanding metabolic regulatory networks.
Estimated active TF response curves generated as described
above provide a complex picture of the cells’ dynamical regu-
lation, but one that can readily be used to produce models that
can be compared with experimental observations. In turn,
successes in such modeling can provide experimental support for
proposed regulatory modules. Extending the scope of the anal-
ysis by additional estimated TFAs would provide a broader view
of the cellular response and enable additional modules to be
supported by experimental evidence.

Materials and Methods
Strain and Growth. DBY10085 is a haploid prototrophic deriv-
ative of CEN.PK122 (Mata;URA;LEU;HIS;TRP;MAL2–
8C;SUC2). Minimal defined medium contains, in addition to
carbon source, CaCl2�H2O (0.1 g�liter), NaCl (0.1 g�liter),
Mg2(SO4)2�7H2O (0.5 g�liter), K2HPO4 (1 g�liter), (NH4)2SO4
(5 g�liter), boric acid (0.5 mg�liter), CuSO4�5H2O (0.04 mg�
liter), KI (0.1 mg�liter), FeCl3�5H2O (0.2 mg�liter),
MnSO4�H2O (0.4 mg�liter), Na2MoO4�2H2O (0.2 mg�liter),
ZnSO4�5H2O (0.4 mg�liter), biotin (2 �g�liter), calcium pan-
tothenate (400 �g�liter), folic acid (2 �g�liter), inositol (2
mg�liter), niacin (400 �g�liter), p-aminobenzoic acid (200
�g�liter), pyridoxine HCl (400 �g�liter), ribof lavin (200 �g�
liter), and thiamine HCl (400 �g�liter).

Chemostat. A 300-ml fermenter vessel was adapted as a chemo-
stat by using minimal defined medium with 2 g�liter galactose,
5 standard liters�min air f low, and stirring at 400 rpm at 30°C.
The dilution rate was �0.2 vol�h. Once the chemostat culture
achieved a constant cell number for at least 3 vol changes, a
glucose pulse (enough to bring the transient concentration in the
vessel to 0.2 or 2.0 g�liter) was injected into the vessel. In
experiment set A, samples were collected at t � 0, 5, 10, 20, 30,
45, 60, and 90 min. In experiment set B, samples were collected
at t � 0, 1, 3, 5, 7, 10, 15, 20, 30, 45, 60, 90, 120, 150, 180, 210,
and 240 min for the high-level pulse, and at t � 0, 2, 4, 6, 8, 10,
15, 20, 30, 45, 60, 90, 120, 150, and 180 min for the low-level pulse.
The same samples were used to measure glucose and ethanol
concentrations, cell number and size, and mRNA levels. The
results presented here are from set B; the reference for the DNA
microarrays was the t � 0 sample. All of the features we describe
for set B appeared also in set A.

Physiological Measurements. At each time point a sample was
withdrawn and divided for the following analyses.
Cell density, number, and size. A 1-ml sample was sonicated (a 10-s
50% duty cycle). The density was measured by light scattering at
600 nm, and cell number and size were measured in a Coulter
counter (model Z2, Beckman Coulter).
Glucose and ethanol. A 1-ml sample was centrifuged at high speed
to remove cells; the supernatant was stored at �20°C. The
residual glucose and ethanol concentration in the growth
medium were assayed by enzyme-coupled NADH oxidation
reactions (assay kits from R-Biopharm, Darmstadt, Germany).

RNA Isolation, Labeling, Microarray Hybridization, and Analysis. Five-
milliliter samples were vacuum-filtered onto a nylon filter,
which was quickly placed into a tube and stored in liquid
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nitrogen at �80°C. RNA was extracted from culture filtrate by
the acid-phenol method followed by ethanol precipitation (33),
amplified (MessageAmp aRNA Kit, Ambion), and labeled
with Cy3 (time points) or Cy5 (reference). Cy5- and Cy3-
labeled probes were hybridized together to microarrays
printed with PCR-amplified fragments containing all known
and predicted Saccharomyces cerevisiae ORFs (12). Microar-
rays were washed and then scanned with a GenePix 4000B laser
scanner (Axon Instruments, Foster City, CA), and the images
were analyzed by using GENEPIX PRO software. Resulting
microarray data were submitted to the Stanford MicroArray
Database (34) (http:��genome-www5.stanford.edu).

Results for each gene and time point are expressed as log2 of
the ratio of sample signal divided by the reference signal. Spots
were filtered by correlation (0.6), level over background (at least
80% of pixels � background � 1 SD), and by manual gridding
of the image.

Models. The mRNA signal is modeled as

dM
dt

�
�

1 � �R
k�

h � kdeg � M , [1]

for a TF that functions as a repressor, where M is the mRNA
level, R is the effective repressor concentration, � is the
maximal production rate, k is the affinity of the TF (concen-
tration at half maximal repression), h is Hill coefficient
(indicating the level of cooperativity), and kdeg is a rate
constant for mRNA degradation. The model assumes that cell
growth rate remains constant.

Rewriting Eq. 1, we get the mRNA production term X:

X �
dM
dt

� kdeg � M �
�

1 � � R
k �

h . [2]

For TF that functions as an activator we get

X �

� � �A
k�

h

1 � �A
k�

h , [3]

where A is the activating TF concentration.
For a combined activator–repressor model we get

X �

� � �A
k�

h

1 � �A
k�

h

� �R
k�

h . [4]

More complex combined models were tested, but the resulting
predictions were not significantly altered.

TFA Estimation. The relative transcription activity of Mig1, Cat8-
Sip4, Rgt1, Gal4, Adr1, and Rcs1 were calculated. mRNA log2
(ratio) values of the genes were used with missing values estimated
by KNNIMPUTE (35). The left side of Eq. 2 was calculated as kdeg �
log2�minimal t1/2; it is assumed that kdeg values are constant over the
experiment’s time, except at t � 0, where values from ref. 31 were
used. We transformed the ratio model to a bilinear form and
determined the parameter R (or A) using singular-value decom-
position (for details see ref. 7). Their levels were set in the range [0,
1]. Nonlinear least squares was used to calculate the parameters k
and h (LSQNONLIN MATLAB 7, Mathworks, Natick, MA). Cat8p
activity is combined with that of Sip4, because they are inseparable,
and, similarly, Mig2p is combined with Mig1p. Rcs1p activity was
calculated for the high pulse only, because the data for the low pulse
was too noisy. Estimation of other TFs (Sfp1�Fhl1�Ifh, ribosomal
biogenesis TFs) was not attempted here.
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