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We studied the relationship between growth rate and genome-wide gene expression, cell cycle progression, and glucose
metabolism in 36 steady-state continuous cultures limited by one of six different nutrients (glucose, ammonium, sulfate,
phosphate, uracil, or leucine). The expression of more than one quarter of all yeast genes is linearly correlated with growth
rate, independent of the limiting nutrient. The subset of negatively growth-correlated genes is most enriched for
peroxisomal functions, whereas positively correlated genes mainly encode ribosomal functions. Many (not all) genes
associated with stress response are strongly correlated with growth rate, as are genes that are periodically expressed under
conditions of metabolic cycling. We confirmed a linear relationship between growth rate and the fraction of the cell
population in the G0/G1 cell cycle phase, independent of limiting nutrient. Cultures limited by auxotrophic requirements
wasted excess glucose, whereas those limited on phosphate, sulfate, or ammonia did not; this phenomenon (reminiscent
of the “Warburg effect” in cancer cells) was confirmed in batch cultures. Using an aggregate of gene expression values, we
predict (in both continuous and batch cultures) an “instantaneous growth rate.” This concept is useful in interpreting the
system-level connections among growth rate, metabolism, stress, and the cell cycle.

INTRODUCTION

The most fundamental system-level challenge for cell phys-
iology, especially for microorganisms, is the achievement of
balanced growth in the face of a fluctuating environment. A
variety of cellular processes, carried out by proteins ex-
pressed from thousands of genes, have to be coordinated to
allow cells to efficiently reproduce, grow and compete for
resources. Among the processes that have to be coordinated
are the extraction of energy and metabolites from the envi-
ronment; biosynthesis of appropriate amounts of hundreds
of molecules large and small; and the events of the cell
division cycle, including replication of the DNA and assem-
bly and segregation of subcellular organelles and structures.
All of this coordination has to be done in such a way as to
allow the cell to modify its activities, often on a very short
time scale, when the environment changes.

The goal of understanding how cells achieve balanced
growth (or growth homeostasis) has been pursued since the
middle of the 20th century, and much progress has been
made. In today’s textbooks, one can find coherent (if not

quite comprehensive) accounts of metabolic regulation of all
kinds: regulation of macromolecular synthesis, control of the
cell cycle, assembly and distribution of organelles, and re-
sponse of these processes to all kinds of environmental
perturbations and stresses. However, until recently, there
have been no ways of following the expression of all genes
at once. Of necessity, therefore, progress has been made by
focusing on the roles of individual genes in each process,
often through mutations in them. In the last decade, mi-
croarray technology has allowed genome-scale gene expres-
sion studies of the yeast cell cycle (Cho et al., 1998; Spellman
et al., 1998; Pramila et al., 2006; Kudlicki et al., 2007); the
response to various stresses (Gasch et al., 2000; Gasch et al.,
2001), and a variety of metabolic circumstances, such as the
diauxic shift from growth on glucose to growth on ethanol
(DeRisi et al., 1997; Brauer et al., 2005) and growth at steady
state in a variety of limiting nutrients (Boer et al., 2003;
Saldanha et al., 2004; Regenberg et al., 2006; Castrillo et al.,
2007). A couple of recent studies (Klevecz et al., 2004; Tu et
al., 2005) examined gene expression during oscillatory be-
havior in chemostats, from which emerged a potential con-
nection with cell cycle control (Futcher, 2006).

We sought to explore, systematically and quantitatively,
the relationship between the growth rate and genome-wide
patterns of gene expression in exponentially growing, nom-
inally unstressed yeast cultures. We specifically sought to
determine which (if any) yeast genes are expressed at a level
(measured as mRNA concentration using DNA microarrays)
simply correlated to a cell’s growth rate, independent of the
environmental factors that ultimately mandate the observed
instantaneous growth rate. In addition to gene expression,
we measured the fraction of unbudded cells (i.e., in the
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G0/G1 stages of the cell cycle) and the concentrations of
glucose and ethanol in the media.

Like other recent studies (Regenberg et al., 2006; Castrillo
et al., 2007), we exploited the chemostat continuous culture
system (Monod, 1950; Novick and Szilard, 1950) to provide
steady-state conditions at different constant growth rates in
a variety of media where the growth rate-limiting nutrient is
known. The chemostat allows one to control the growth rate
of the organism by adjusting the flow rate of fresh medium
into the growth chamber providing a defined environment
amenable to genome-scale analyses (Hoskisson and Hobbs,
2005).

By analyzing mRNA abundance data we obtained from 36
chemostat cultures (six different limiting nutrients each at
six different growth rates), we found that a surprisingly
large fraction (�27%) of all yeast genes are expressed (as
measured by relative mRNA abundance) in a way that is
closely correlated (either negatively or positively) with the
growth rate of the culture. We verified quantitatively, and
extended to the conditions of steady-state culture, the rela-
tionship between growth rate and the fraction of unbudded
cells first suggested by Unger and Hartwell (1976). We also
discovered a striking difference between growth limitation
by ammonium, sulfate, or phosphate (“natural nutrients”; cf.
Saldanha et al., 2004) as distinguished from the nutrients
made essential by mutations conferring auxotrophic require-
ments. When the growth of cultures (either steady state or
batch) is limited by phosphate, ammonia, or sulfate, unused
glucose is spared, as one might expect, whereas when
growth is limited by auxotrophic requirements, excess glu-
cose is completely consumed.

We interpret these results as reflections of system-level
regulatory mechanisms, as yet only partially understood,
that must underlie the coordination of the growth rate with
gene expression, entry into the cell division cycle, the stress
response, and energy metabolism.

MATERIALS AND METHODS

Culture Conditions, Strains, and Media
Yeast cultures were grown in chemostats under 36 different continuous
culture conditions, namely, six different limiting nutrients each at six different
dilution rates. The dilution rates (and therefore the culture’s average expo-
nential growth rate, �) ranged from �0.05 h�1 (corresponding to a cell
doubling time of about 14 h) to more than 0.3 h�1 (doubling time of about
2 h), and they were verified directly by collecting effluent into graduated
cylinders. Chemostat growth was limited by one of the following nutrients:
glucose (G), ammonium (N), phosphate (P), sulfate (S), leucine (L), or uracil
(U). Chemostats were established in 500-ml fermenter vessels (Sixfors; Infors
AG, Bottmingen, Switzerland) containing 300 ml of culture volume, stirred at
400 rpm, and sparged with five standard liters per minute humidified and
filtered air. Chemostat cultures were inoculated, monitored and grown to
steady state as described previously (Brauer et al., 2005). All cultures were
monitored for changes in cell density and dissolved oxygen and grown until
these values remained steady for at least 24 h.

For nonauxotrophic limitations (G, N, P, and S), we used strain DBY10085
(relevant genotype Mata MAL2-8C), which is the prototrophic CEN.PK-
derived strain described by van Dijken et al. (2000). For limitations with uracil
(U) or leucine (L), we used nonreverting mutant versions of the same strain,
i.e., DBY9492 (ura3-52) or DBY9497 (leu2-3leu2-11), respectively.

Chemostat cultures were grown in minimal defined (MD) media supple-
mented with glucose (G, N, P, and S limitations), L limitation, or U limitation.
Concentrations of the limiting nutrient were adjusted downward in each MD
medium formulation. Detailed base media compositions are given in Table 1.
These solutions were autoclaved and supplemented with glucose, metals, and
vitamins (and necessary uracil or leucine), added via sterile filtration as
described previously (Saldanha et al., 2004).

Batch culture media were identical to chemostat media except that they
contained 1% glucose. Phosphate limiting medium contained a final concen-
tration of 10 mg/ml potassium phosphate and was supplemented with either
200 mg/l final leucine or 40 mg/l final uracil where appropriate. Uracil
limiting medium contained 4 mg/l uracil, and leucine limiting media con-
tained 40 mg/l leucine.

The patterns of gene expression in the chemostat under nutrient limitation
closely approximate the patterns found in batch cultures in the same medium
at the point that the concentration of the limiting nutrient falls to the value
found in the corresponding chemostat (Saldanha et al., 2004; Brauer et al.,
2005). Thus, there is a well-defined point of correspondence between the
physiology of the cells in chemostats and batch cultures in the same medium.

Measurement of Culture Growth Parameters
At each time point, 2 ml of culture was withdrawn and sonicated for 10 s, just
enough to break up all clumps of cells, as confirmed in the light microscope.
Sonicated cultures were examined under a light microscope at 200� magni-
fication for identification of the proportion of cells with no buds, with small
buds or with large buds. Culture density was measured both by absorbance
at 600 nm and with a Coulter counter (model Z2; Beckman Coulter, Fullerton,
CA), set to count cells with volumes between 8.0 and 250.0 fl; data describing
the distribution of cell volumes also were recorded.

Residual glucose and ethanol concentrations were assayed as described by
Brauer et al. (2005), and residual phosphate was measured as described by
Saldanha et al. (2004).

RNA Isolation, Labeling, Microarray Hybridization,
and Data Collection
Samples from chemostats (10 ml) were harvested for RNA by siphoning
through a drop-tube followed by vacuum filtration onto nylon filters. Filters
were immediately placed into tubes containing liquid nitrogen and stored at
�80°C until extracted for RNA.

RNA for microarray analysis was extracted by the acid-phenol method and
cleaned using RNeasy mini columns (QIAGEN, Valencia, CA). RNA was
amplified and labeled using the Agilent low RNA input fluorescent linear
amplification kit (P/N 5184-3523; Agilent Technologies, Palo Alto, CA). This
method entails initial synthesis of cDNA by using a poly(T) primer attached
to a T7 promoter. Labeled cRNA is subsequently synthesized using T7 RNA
polymerase and either cyanine (Cy)3 or Cy5 UTP. Each Cy5-labeled experi-
mental cRNA sample was mixed with the Cy3-labeled reference cRNA and
hybridized were hybridized for 17 h at 60°C to an Agilent Yeast V2 oligo
microarray. Microarrays were washed, scanned with an Agilent DNA mi-
croarray scanner (Agilent Technologies), and analyzed using Agilent Feature
Extraction Software version 7.5. Resulting microarray intensity data were
submitted to the PUMA Database (http://puma.princeton.edu) for archiving
and analysis.

Features flagged as outliers due to low intensity or poor quality were
excluded, and the results for each gene, and time point were expressed as the
log2 of the sample signal divided by the signal in the reference channel. The
reference RNA for all samples was taken from the glucose-limited chemostat
grown at a dilution rate of 0.25 h�1.

Analysis of Gene Expression Data

Hierarchical Clustering. Expression data were clustered by gene, using the
UPGMA algorithm of Eisen et al. (1998). Clusters with an average expres-
sion that was either nutrient specific or correlated with growth rate were
identified.

Table 1. Composition of chemostat media (values in grams per
liter)

Compound

Limiting condition

G N P S L U

CaCl2�2H2O 0.1 0.1 0.1 0.1 0.1 0.1
NaCl 0.1 0.1 0.1 0.1 0.1 0.1
MgSO4�7H2O 0.5 0.5 0.5 0.5 0.5
MgCl�6H2O 0.412
KH2(PO4)2 1 1 1 1 1
KCl 1
(NH4)2SO4 5 5 5 5
NH4Cl 4.05
Glucose 0.8 5 5 5 5 5
Leucine 0.015
Uracil 0.005
Vitamins and

metals
As detailed in Saldanha et al. (2004)
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Functional Annotation. Sets of genes were assigned process, function, and
cellular components according to the annotations from the Gene Ontology
(GO) (Ashburner et al., 2000). The significant representation of GO terms in
the set was evaluated by GO Term Finder at the Saccharomyces Genome
Database, and by the GO-TermFinder perl module (Boyle et al., 2004) using
the Bonferroni-correct p value. Ontologies used were downloaded 7 August
2007 from http://www.geneontology.org, and the GO gene associations for
the yeast genome were obtained from the Saccharomyces Genome Database
(http://www.yeastgenome.org).

Singular Value Decomposition. We applied singular value decomposition (SVD)
(Alter et al., 2000) to the expression data matrix to identify the major sources of
variation in the data. Missing data were imputed using the k-nearest neighbors
algorithm (KNN imputation) (Troyanskaya et al., 2001), with k � 10.

Linear Regression Model for Gene Expression Data. For each of the resulting
5537 genes, expression was individually modeled as a linear function of
growth rate. For each gene, this yielded a slope, baseline, and goodness of fit
(R2); this slope measures the magnitude of the change in gene expression due
to growth rate. We computed p values to assess the significance of slopes and
R2 values by using the bootstrap technique (Efron, 1993), and we corrected for
multiple hypotheses using the False Discovery Rate procedure (Benjamini
and Hochberg, 1995). In each bootstrap replicate, a value was drawn at
random, with replacement, from each of six sets of six columns (correspond-
ing to chemostat cultures with the same flow rate, regardless of nutrient
limitation). The linear model described above was then applied to each of
100,000 replicates, and the parameters describing slope and intercept were
retained; see Supplemental Table S1 for complete results. The analysis was
performed using R (R Development Core Team, 2007) and MATLAB (Math-
works, Natick, MA).

The distributions of regression slopes corresponding to lists of genes of interest
were compared with the bootstrap-generated null distribution. For each such list,
a pair of p values was computed to assess the statistical significance of the
corresponding sensitivity to growth rate, using a Kolmogorov–Smirnov two-
sample test and/or a Wilcoxon–Mann–Whitney two-sample test.

Tests for Correlation with Growth Rate. Genes were ordered by their bootstrap
p value for the slope coefficient relating expression to growth rate. Thus, genes
with low ranks were those whose expression profiles correlated significantly
with growth rate, either positively or negatively. Bootstrap p values were also
computed for R2 to assess the significance of a linear response to growth, as
captured by the regression model, as opposed to nonlinear response to growth,
which we could not exclude a priori (see Supplemental Table S1).

Using these p values, we sought to identify a smaller set of genes that was
stringently defined as responding specifically to growth. To do so, we looked
for genes whose response to growth was significant (either positive or nega-
tive), whose response profile across flow rates was linear beyond chance, and
whose response did not change substantially across nutrient limitation re-
gimes. Applying these filters generated a list of 72 genes (“calibration genes”
in Supplemental Table S1).

Prediction of Relative Instantaneous Growth Rates. Relative instantaneous
growth rates for novel microarray data were estimated with a linear model
calibrated using the regression results from our nutrient limitation data.
Specifically, the expression of gene g in microarray condition c was repre-
sented as follows:

yg,c � bc � bg � rcxg � eg,c

The expression yg,c is thus a sum of a condition-specific baseline bc, a gene-
specific baseline bg, a linear growth rate response with slope xg to the condi-
tion’s chemostat flow rate rc, and an “error” term eg,c that captures leftover
gene-specific variation (both biological and noise).

For any new microarray, the relative growth rate rc (along with the condi-
tion-specific baseline bc) is unknown. We produce an estimate of the relative
growth rate (and of the baseline) by leveraging the regression estimates (of
slope and gene-specific baseline) that were obtained for the 72 calibration
genes (with bootstrapped p values �10�5 for both linear fit and slope) in our
nutrient limitation data. By assuming an initial estimated baseline bc

0 � 0, the
relative growth rate and condition-specific baseline are estimated by itera-
tively updating their values according to the following equations:

rc
t �

1
|G|�

g�G

yg,c � bc
t � bg

xg

bc
t�1 �

1
|G|�

g�G

yg,c � bg � rc
txg

For further details, see (Airoldi et al., 2007).
Complete data sets and supplemental materials are archived at http://

growthrate.princeton.edu.

RESULTS

To study, systematically and quantitatively, the effect of
growth rate on genome-wide gene expression, the cell cycle,
and metabolism, we made measurements from 36 chemostat
cultures, each of which was at steady state at one of six
different growth rates ranging from from 0.05 h�1 (corre-
sponding to a doubling time of about 14 h) to more than 0.3
h�1 (doubling time �2 h). All were derivatives of strain
CEN.PK growing in the same basic medium, but with one of
six different growth rate-limiting nutrients: G, N, S, P, U (in
a nonreverting ura3 mutant), or L (in a nonreverting leu2
mutant).

The Fraction of Unbudded Cells Is Linear with Growth
Rate for All Limiting Nutrients
As estimated by phase-contrast microscopy (and verified by
measurements of DNA content in a fluorescence-activated
cell sorter; Supplemental Figure S1), the fraction of cells in
an unbudded (G0 or G1) phase of the cell cycle was a linear
function of the dilution rate D (u � 0.936–1.971D; R2 �
0.836). The slope of the regression line does not vary signif-
icantly between growth conditions (Figure 1A); thus, the
expectation of Unger and Hartwell (1976), that slower grow-
ing cells spend an increasing proportion of the cell division
cycle in G0/G1, was satisfied to considerable precision in all
cases. Some previous studies (Rivin and Fangman, 1980;
Guo et al., 2004) have found this expectation is not satisfied
in nitrogen limitation; we found no significant difference
(Supplemental Figure S2). In our experiments, over a nearly
sevenfold range of growth rates, yeast cells in balanced
growth that grow more slowly spend quantitatively corre-
spondingly larger fractions of the cell doubling time in the
unbudded (G0/G1) phase of the cell cycle.

This result stands in contrast to the observation of
(Saldanha et al., 2004), who found that in batch cultures
starving for phosphate or sulfate, cells accumulate in the
unbudded state (G0/G1) within a cell generation of the
exhaustion of the limiting nutrient, whereas batch culture
auxotrophs starving for leucine or uracil fail to show this
orderly response. Here, where cells are growing slowly but
not yet actually starving, we see that there is no difference in
the fraction of cells in G0/G1 in the chemostats: the same
linear relationship with growth rate was observed with all
limiting nutrients.

The other cell parameters were consistent with theoretical
expectation (Kubitschek, 1970) and previous experience.
With the exception of the glucose-limited cultures, cell den-
sity is roughly a linear function of the dilution rate (Figure
1B). The case of glucose is more complex, reflecting rela-
tively well understood changes in glucose metabolism at
higher steady-state growth rates (Kasper von Meyenburg,
1969; Postma et al., 1989; Alexander and Jeffries, 1990). Av-
erage cell volume varies across dilution rate in a complex
manner for all limiting nutrients (Figure 1C), with differ-
ences that range between 16% (for sulfur) and 31% of the
maximum (for phosphate and uracil). However, again with
the exception of the glucose-limited cultures, the calculated
total cell volume (average cell volume times number of cells)
is proportional to the total cell mass (Supplemental Figure
S3; R2 � 0.819).

Glucose Consumption and Ethanol Production in
Nonglucose-Limited Chemostats Depends on the Nature of
the Limiting Nutrient
We measured the residual glucose and ethanol in all 36
chemostats, as described in the Methods. The results (Figure
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1D) for the glucose-limited chemostats were unremarkable:
residual glucose was very low for all growth rates, and only
a very small amount of ethanol was produced (and that only
at higher growth rates). In contrast, where glucose was not
limiting, there were striking differences. In the cases of lim-
iting ammonia, phosphate or sulfate, high levels of glucose

remained, and relatively modest amounts of ethanol were
produced. In the leucine- and uracil-limited chemostats, the
residual glucose was very low, and most of it seemed to
have been fermented to ethanol.

This bifurcation of response between phosphate or sulfate
limitation, on the one hand, and leucine or uracil limitation,
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Figure 1. Measured characteristics of cultures at
steady state. Limiting nutrients at bottom of fig-
ure. Within each limitation, dilution rates are or-
dered from 0.05 to 0.3 h�1 in 0.05 h�1 increments.
(A) Fraction of unbudded cells. (B) Steady-state
culture density in Klett units. (C) Average cell
volume. (D) Residual glucose and ethanol levels.
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on the other, corresponds to a difference observed previ-
ously in batch cultures (Saldanha et al., 2004) found prompt
accumulation (within a single cell cycle) of cells in G0/G1 in
the cases of limitation by phosphate or sulfate, but not by
leucine or uracil. This result suggests that there are at least
two mechanisms that relate growth rate and metabolism:
one that continuously controls entry into the cell cycle at low
growth rates, when cells are not yet starving, and another
when cells actually exhaust their limiting nutrients. The
failure to limit fermentation and spare the glucose in our
leucine and uracil chemostats, and the failure to promptly
stop the cell cycle in batch cultures starving for leucine or
uracil, may reflect a common signaling failure in case of the
auxotrophic limitations.

We studied batch cultures to determine whether this in-
ability to limit glucose consumption is a general phenome-
non and not limited to continuous culture conditions. To this
end, we compared glucose consumption of auxotrophs and
prototophs in batch cultures containing growth-limiting
concentrations of phosphate, leucine, or uracil (see Materials
and Methods for details). Growth was followed for 24 h, and
the glucose consumed was measured during late exponen-
tial (t � 8 h) and stationary (t � 24 h) phases. The amount of
glucose consumed (normalized to cell number) was approx-
imately twofold higher in auxotrophs that were starved for
their auxotrophic requirement compared with either a pro-
totrophic control or to the same strains starved for phos-
phate and supplemented with ample leucine or uracil (Table
2). Excess consumption of glucose was observed in the late
exponential and in the stationary phase of growth (Figure 1).
In agreement with (Saldanha et al., 2004), we found that cells
grown under these conditions do not mount an appropriate
cell cycle arrest upon depletion of an unnatural limitation,
but they do arrest in G1/G0 when supplemented with their
auxotrophic requirement and starved for phosphate (a nat-
ural limitation; Supplemental Figure S2). Thus, glucose
wasting in auxotrophs growth-limited for their requirement
is not limited to continuous cultures, and this phenomenon,
and the failure to arrest the cell cycle first noted in Saldanha
et al. (2004), is a feature of which essential nutrient is ex-
hausted first and not of the genotype of the strain.

Growth Rate Accounts for a Large Fraction of the Signal
in the Gene Expression Pattern
Hierarchical clustering (Eisen et al., 1998) of gene expression
from the 36 chemostats is shown in Figure 2. Visual inspec-
tion of Figure 2 shows a pattern that is strikingly similar for
the six different media, with large groups of genes that
increase their expression with increasing growth rate, and
comparably large groups decreasing their expression with
increasing growth rate. In addition, there are much smaller
clusters of genes that are expressed strongly in only one or
two media; in general, these do not show as much relation-
ship to growth rate. Fewer than 8% of the genes respond in
a uniform, nutrient-specific manner (Figure 2). The largest
nutrient-specific cluster, responding to phosphate limitation,
comprises just 133 genes (2.4% of the total).

Singular value decomposition analysis (Alter et al., 2000)
of these data are visualized in Figure 3A. The fractional
information in each eigengene (Figure 3B) shows that the
first eigengene accounts for 43.6% of the variation in gene
expression present in the data set. The projection of this
eigengene correlates very strongly with the culture specific
growth rate (R2 � 0.69; p � 10�9), indicating that a large
fraction of the signal in gene expression is growth rate
specific. Figure 3C shows the average expression as a func-
tion of growth rate for the first four eigengenes. From this,
one can clearly see that expression of the first eigengene is
largely independent of the nature of the limiting nutrient,
whereas the second and third eigengenes show both strong
growth rate correlation and nutrient specific effects, notably
for phosphate (eigengene 2) and sulfate (eigengene 3) limi-
tation. When we come to the fourth eigengene, very little
relationship to growth rate remains. The sum of the infor-
mation in the first three eigengenes amounts to nearly 70%
of the total variation.

Expression of Many Genes Is Strongly Influenced by
Growth Rate to a Degree Characteristic for Each Gene
For each of the 5537 genes in the imputed data, expression
was individually modeled as a linear function of growth rate
(independent of limiting nutrient). Of these, 3049 genes
(55.1%) have expression patterns than fit (at a bootstrapped
p � 0.05) this linear model; of these, approximately half
(1470, or 26.5% of all genes) have expression patterns that
respond significantly (bootstrapped p � 0.05) to growth rate.

For those genes whose expression is correlated to growth
rate, the magnitude of the effect of growth rate on gene
expression is given by the slope of the regression of expres-
sion on growth rate. The distribution of these slopes (shown
in Figure 4 as a histogram) is significantly broader than the
null distribution generated by bootstrap sampling (SD 2.97
vs. 1.41). By plotting the positions of a set of genes on this
histogram, one can see systematic relationships between the
aggregate response to growth rate and any other character-
istic a query set of genes might share. In Supplemental Table
S1 (see also http://growthrate.princeton.edu), we provide
data for all the genes, including the significance with which
their expression correlates with growth rate. On the website,
we also provide a simple utility that plots the distribution of
growth rate slopes for any query set of genes relative to the
overall distribution shown in Figure 4.

Functional Roles of Genes Strongly Correlated with
Growth Rate
To identify the most prominent of the potential functional
reasons for the correlation between the expression of some
genes and the growth rate, we chose 1608 genes whose expres-

Table 2. Response to nutrient limitations in batch culture

Strain
Limiting
nutrient Supplement

Glucose
8 h

Consumed
24 h

% G0/
G1

24 h

Prototroph Phosphate None 5.91 13.44 91
leu2 Phosphate Excess leucine 5.04 10.15 93
ura3 Phosphate Excess uracil 4.78 10.06 92
leu2 Leucine None 10.22 18.70 60
ura3 Uracil None 9.86 24.13 73

Batch cultures of isogenic CEN.PK derivatives were grown in che-
mostat minimal medium containing 1% glucose with limiting phos-
phate (10 mg/l), leucine (40 mg/l), or uracil (4 mg/l) supplements
as described in Materials and Methods. Excess leucine and uracil,
when provided, was 200 and 40 mg/l, respectively. The growth
curves are shown in Supplemental Figure S3. Specific glucose
consumption was calculated for time (t) as the normalized frac-
tion of glucose consumed (grams per liter) using the equation
(�glucose�initial � �glucose�t)/�glucose�initial)/cells/ml.

M. J. Brauer et al.

Molecular Biology of the Cell356



sion was best linearly correlated with growth rate (Supplemen-
tal Table S2; see Materials and Methods for the details). One
subset (337 genes) had negative slopes (more than 1.5 standard
deviations less than the average), another subset (291 genes)
had positive slopes (more than 1.5 standard deviations more
than the average), and the third had low variability (boot-
strapped p � 10�4) and low slope (within 0.5 SD of average),

i.e., their expression was not detectably related to growth rate
(see the dash-dotted blue line in Figure 4).

Each of these subsets was submitted to GO Term Finder
(Boyle et al., 2004) querying all three ontologies (Process,
Molecular Function, and Cellular Component). The nature
of the GO hierarchy produces highly redundant results in
this situation. To maintain only the biologically and statis-

Figure 2. Hierarchical clustering of expression values across dilution rates and limiting nutrients. Clustering by Pearson correlation reveals
many up- and down-regulated clusters spanning all nutrient limitations (e.g., Induced1, Induced2, Repressed) and few smaller gene groups
regulated in a nutrient-specific manner (e.g., G1–G4, P, S, and N). Reference for all samples is from a glucose-limited chemostat at 0.25 h�1.
Conditions are as described in Figure 1.
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Figure 3. SVD decomposition of expression data. Singular value decomposition of the growth rate/nutrient limitation microarray data
shows that a large portion of the variation in gene expression (	70%) is related to changes in growth rate. Secondary eigengenes also capture
nutrient-specific responses (e.g., phosphate and sulfate). (A) 36 eigengenes. (B) Eigengene weights (eigenvalues). (C) Expression levels of the
four most significant eigengenes.
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tically strongest relationships, we limited further analysis to
GO terms with p � 10�3. These results were sorted by the
fraction of genes hit within each GO term, and we focused
on the terms in which this fraction was at least 10%. The final
result (Table 3 and Supplemental Table S2) gives a very clear
picture: the processes associated with the gene subset whose
expression is negatively related to growth rate are focused
on energy metabolism, especially oxidative metabolism; the
only functional category that met our stringent criteria was
oxidoreducase activity, and the only cellular component
implicated at this level of statistical stringency was the per-
oxisome. Our negatively growth-correlated subset contained
25 and 67% (designated term fraction in Table 3) of the genes
annotated to peroxisomes and the peroxisomal matrix, re-
spectively.

An equally clear picture emerged from the GO term anal-
ysis of the subset of genes whose expression is positively
correlated with growth rate. About half of all the yeast genes
associated with mitochondrial protein import are found in
this subset, and substantial fractions of all the genes associ-
ated with translation, ribosome biogenesis, and rRNA me-
tabolism are represented. Consistently, ribosomal constitu-
ents (mitochondrial as well as cytosolic) are very strongly
represented in both the Function and Component hierar-
chies.

In contrast, the 980 genes whose expression is robustly
independent of growth rate are annotated (with similar sta-
tistical certainty and with similar Term Fraction values) to
very many (�80) diverse GO terms. The many processes
that underlie basic cytoplasmic cell biology or nonnucleolar
nuclear biology are well represented in this subset of genes,
i.e., those whose expression is unrelated to the growth rate.

Genes Whose Expression Is Correlated with Growth Rate
Are Highly Represented in the “Environmental Stress
Response”
One of the questions that can be addressed using the tools
developed above is the relationship between growth rate
and the many genes whose expression changes regardless of
the nature of the environmental stress imposed. In their data
set of 156 such stress conditions, Gasch et al. (2000) found
two clusters of genes that were either induced or repressed
together in this way, which they called the environmental
stress response (ESR) genes.

The distributions of the 283 genes in the ESR-induced
cluster (red) and the 585 genes in the ESR-repressed cluster
(green) are superimposed on the histogram of expression
versus growth rate slopes in Figure 5. Both clusters had very
high representations of growth rate-correlated genes and
constitute sets of statistically significant outliers to the over-
all distribution of slopes.

The 283-gene “ESR-induced cluster” has p values corre-
sponding to Kolmogorov–Smirnov and Wilcoxon–Mann–
Whitney two-sample tests practically equal to zero (see Ma-
terials and Methods), indicating that this cluster has a very
significant representation of genes whose expression is neg-
atively correlated with growth rate. In fact, nearly one quar-
ter of the top 500 genes with negative growth rate regulation
are in the ESR-induced cluster found by Gasch et al. (2000).
The remaining 376 genes are enriched for GO process anno-
tation terms relating to carbohydrate metabolism, particu-
larly respiratory metabolism and oxidative phosphorylation.
The component annotation terms indicate a significant en-
richment in genes for proteins localized to the lytic vacuole
and the peroxisome.

The “ESR-repressed” cluster (585 genes) also has Kolmog-
orov–Smirnov and Wilcoxon–Mann–Whitney two-sample
test p values of approximately zero, indicating a highly
significant positive correlation with growth rate. Again, the
500 genes with the most significant positive correlations
between expression and growth rate include 227 of the
ESR-repressed genes. The remaining growth rate correlated
genes are significantly enriched for GO process terms that
include membrane lipid biosynthesis and protein import
into the mitochondrion.

The most significant components of the first (growth rate
correlated) eigengene (Figure 3) are also enriched for genes
in the ESR. When genes were ranked by their projection onto
eigengene 1, a Wilcoxon-Mann-Whitney rank sum test
shows that those genes identified by (Gasch et al., 2000) as
being either induced or repressed in response to stress had
a significantly lower than expected rank (t � 11.626, df �
5535, p � 10�15). This is further evidence that the ESR genes
contribute strongly to the first eigengene and therefore to the
growth rate pattern seen in the expression data.

Not all the ESR genes are expressed in such a way as to be
signficantly correlated with growth rate in our data. We
detected no enrichment, for example, in genes for chaperone
proteins and for some other classes of classical stress re-
sponse genes. The significant majority of stress-induced
genes that are expressed at increasingly low growth rates are
related to oxidative metabolism; of 131 genes, 16% are oxi-
doreductases.

These results raise the possibility that many of the ESR
genes as defined previously may in fact not be responding
directly to stress, but instead are responding to a reduction
in growth rate secondary to the stress. A similar suggestion
has recently been made in (Castrillo et al., 2007) based on a
similar set of observations.
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Figure 4. Distribution of experimental growth rate responses ver-
sus bootstrapped background distribution. A histogram of the esti-
mated regression slopes for 5537 genes is compared with a 100,000-
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genes that do not respond to growth rate (density estimate; dash-
dotted, blue line). The expression responses of genes in our microar-
ray data are significantly broader than expected by chance, whereas
genes we determine to be largely unresponsive to changes in
growth rate have slopes near zero.
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Table 3. GO annotation of genes according to growth rate response

Slope >1.5 SDs below average 337 genes
Process p value Gene hits Term size Term fraction (%)

Fatty acid �-oxidation 1.80E-04 6 8 75.0
Glutamine family amino acid catabolic process 4.20E-04 7 13 53.8
Energy reserve metabolic process 2.61E-05 12 36 33.3
Glucose metabolic process 8.10E-04 14 65 21.5
Monosaccharide metabolic process 1.10E-04 18 92 19.6
Hexose metabolic process 9.50E-04 16 85 18.8
Cellular carbohydrate metabolic process 7.75E-12 40 213 18.8
Monocarboxylic acid metabolic process 5.86E-06 23 124 18.5
Carbohydrate metabolic process 1.37E-12 43 233 18.5
Energy derivation by oxidation of organic compounds 4.59E-06 25 143 17.5
Generation of precursor metabolites and energy 5.02E-07 30 181 16.6
Coenzyme metabolic process 1.40E-04 22 135 16.3
Alcohol metabolic process 2.80E-04 24 163 14.7
Carboxylic acid metabolic process 6.52E-05 37 312 11.9
Organic acid metabolic process 6.52E-05 37 312 11.9

Function
Oxidoreductase activity 1.50E-07 38 270 14.1

Component
Peroxisomal matrix 1.45E-06 8 12 66.7
Microbody 3.53E-05 14 57 24.6
Peroxisome 3.53E-05 14 57 24.6

Slope >1.5 SDs above average 291 genes
Process

Protein import into mitochondrial matrix 1.00E-07 11 22 50.0
Maturation of SSU-rRNA 1.68E-10 17 44 38.6
Protein import into mitochondrion 4.67E-07 13 37 35.1
Protein targeting to mitochondrion 2.23E-05 13 49 26.5
Mitochondrial transport 6.11E-05 14 62 22.6
Ribosome biogenesis and assembly 4.73E-15 57 402 14.2
Ribonucleoprotein complex biogenesis and assembly 2.20E-12 58 473 12.3
Translation 8.47E-19 83 686 12.1
rRNA metabolic process 8.51E-05 29 247 11.7
rRNA processing 1.60E-04 28 240 11.7
Macromolecule biosynthetic process 1.16E-19 97 881 11.0

Function
snoRNA binding 5.52E-06 11 32 34.4
Structural constituent of ribosome 3.72E-43 71 230 30.9
Protein transporter activity 2.10E-04 12 53 22.6
Structural molecule activity 3.34E-30 72 357 20.2

Component
Mitochondrial outer membrane translocase complex 2.04E-05 6 8 75.0
Cytosolic large ribosomal subunit (sensu Eukaryota) 3.72E-25 37 97 38.1
Cytosolic small ribosomal subunit (sensu Eukaryota) 1.27E-15 24 64 37.5
Cytosolic ribosome (sensu Eukaryota) 1.02E-43 64 176 36.4
Cytosolic part 2.36E-41 65 197 33.0
Large ribosomal subunit 8.13E-26 44 142 31.0
Ribosomal subunit 4.18E-44 73 240 30.4
Small ribosomal subunit 7.37E-16 29 98 29.6
Ribosome 9.44E-38 80 357 22.4
Small nucleolar ribonucleoprotein complex 3.39E-07 23 132 17.4
Nucleolar part 4.92E-10 31 179 17.3
Ribonucleoprotein complex 1.10E-35 101 623 16.2
Nucleolus 1.44E-10 42 304 13.8
Nonmembrane-bound organelle 1.96E-27 118 1033 11.4
Intracellular non-membrane-bound organelle 1.96E-27 118 1033 11.4
Cytosol 2.69E-13 69 626 11.0

Unresponsive genes 980 genes
Process

80 biological processes �1.00E-03 	10.0
Function

Exoribonuclease activity, producing 5
-phosphomonoesters 6.60E-04 13 23 56.5
Exoribonuclease activity 6.60E-04 13 23 56.5
Exonuclease activity, active with either ribo- or deoxyribonucleic acids

and producing 5
-phosphomonoesters
8.10E-04 15 30 50.0

Guanyl-nucleotide exchange factor activity 7.40E-04 17 37 45.9
General RNA polymerase II transcription factor activity 6.19E-05 25 62 40.3
GTPase regulator activity 5.50E-04 27 77 35.1
RNA polymerase II transcription factor activity 4.90E-04 37 123 30.1
Transcription regulator activity 2.01E-09 90 327 27.5
Protein binding 1.40E-04 121 585 20.7
Hydrolase activity 1.61E-05 160 802 20.0

Component
�40 cellular components �1.00E-03 	10.0
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Growth Rate and Cell Cycle-regulated Genes
The distribution of regression slopes of the 800 genes iden-
tified by (Spellman et al., 1998) as having a strong cell cycle
component in expression was nearly identical to the distri-
bution of slopes for all genes (Figure 5, black line). A break-
down by cell cycle phase gives nearly identical results (Fig-
ure 6), the exception being in the M-G1 phase, which is

slightly enriched for genes that have a negative correlation
between expression and growth rate. Of the 89 M-G1 specific
genes, 24 have a growth rate dependence that is 	1 SD from
the mean of all genes. These results are consistent with the
idea that slower growing cells spend more time waiting for
START, i.e., in the M-G1 interval of the cell cycle.

A different picture emerges under the special conditions
of continuous culture that produce periodic cycles of me-
tabolism (Tu et al., 2005; see also Kasper von Meyenburg,
1969; Klevecz et al., 2004). Under these circumstances, a
high degree of periodicity in expression is seen for more
than half of all yeast genes, vastly many more than the 800
or so detected in synchronized cells growing under more
standard conditions (Spellman et al., 1998; Pramila et al.,
2006; Kudlicki et al., 2007). It is of interest to see whether
the several classes of genes distinguished by their relative
expression during the metabolic cycling described and
analyzed by Tu et al. (2005) are correlated with growth
rate in our chemostat steady-state conditions. In Figure 7,
we plotted four sets of genes identified by (Tu et al., 2005)
relative to the histogram of regression slopes introduced
in Figure 4: the “most periodic” (Tu et al., 2005, their table
2) and the mitochondrial ribosomal, peroxisomal, and
cytoplasmic ribosomal clusters (Tu et al., 2005, their sup-
plemental tables S1, S2, and S3, respectively). The results
clearly show that the peroxisomal distribution (red line) is
bimodal, with the majority class consisting of genes
whose expression is negatively correlated to growth rate
in ordinary conditions (i.e., these genes, in ordinary con-
ditions, are more strongly expressed at lower steady-state
growth rates in all media we tested). The minority peak
includes some of the same ESR-induced genes that we
identified above as not changing with growth rate. The
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other three groups, so clearly distinguished in the meta-
bolic cycling conditions of (Tu et al., 2005), are all posi-
tively correlated with growth rate under normal condi-
tions (with a small subset of the ribosomal group
extremely strongly correlated with growth rate).

A Linear Model That Successfully Predicts Relative
“Instantaneous Growth Rate” in Nonsteady-State
Cultures
The results of our study identify a number of genes (on the
order of one quarter of all genes in the genome) that are
strongly correlated with growth rate at steady state, regard-
less of the limiting nutrient. Furthermore, there are many
nonsteady-state conditions (notably the many stresses stud-
ied by Gasch et al. (2000) and the several kinds of synchro-
nized cultures) in which there seems to be a systematic
relationship to growth rate-related gene expression patterns.
Indeed, these results encouraged the idea that much of the
gene expression signature of “environmental stress” might
actually reflect a changing growth rate secondary to stress.
It, therefore, seemed possible that one might use the pattern
of expression of a suitably chosen set of genes strongly
correlated to growth rate as a way to estimate the instanta-
neous growth rates of nonsteady-state cultures, even cul-
tures in which the growth rate is changing rather quickly in
time.

To this end, we produced a simple linear model (de-
scribed in Materials and Methods) calibrated using the 72

genes best correlated to growth rate in our 36 chemostats
and least sensitive to nutrient-specific effects. We performed
a number of cross-validation experiments on our chemostat
data to estimate the model’s expected error when inferring
the relative growth rate for a novel microarray (Supplemen-
tal Figure S5).

We tested the model using the data from Brauer et al.
(2005), which followed genome-wide gene expression dur-
ing the diauxic shift from glucose fermentation to respira-
tory growth on the evolved ethanol in batch culture. The
experiments included measurements of residual glucose,
ethanol, dissolved oxygen, and bud index. Brauer et al.
(2005) found that the cells seem to stop growing, as judged
from a discontinuity in both dissolved oxygen and bud
index, just when the glucose is exhausted at about nine
hours after the beginning of their experiment. Figure 8
shows the instantaneous growth rate inferred from our
model on the same axis used by Brauer et al. (2005). It is clear
that the inferred rate falls sharply at about this time and rises
again as the cells, following the shift, resume growing on the
ethanol. It is worth noting that Brauer et al. (2005) inter-
preted their gene expression patterns in terms of an envi-
ronmental stress response caused by the starvation.

DISCUSSION

We studied 36 yeast chemostat cultures growing at six dif-
ferent growth rates under six different nutrient limitations:
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Figure 8. Inferred instantaneous growth rates in batch culture undergoing the diauxic shift. The main figure shows the relative growth rates
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glucose, sulfate, phosphate, ammonium, leucine (in a non-
reverting leu2 mutant), and uracil (in a nonreverting ura3
mutant). By using a variety of different nutrients to limit
growth rate, we could focus on quantitative relationships
with growth rate per se, and not with the particular nutrient
regime that limits the growth rate. Our data agree very well
with the results of others who have done similar studies
(Boer et al., 2003; Saldanha et al., 2004; Regenberg et al., 2006;
Castrillo et al., 2007), both with respect to genes that are
responsive to particular limitations and with respect to
genes that respond mainly to growth rate.

Analysis of the small clusters of genes associated with
particular limitations basically recapitulates results obtained
previously by Saldanha et al. (2004). Most of the genes
specifically associated with sulfate, phosphate, uracil, or
leucine limitation are readily understood in terms of known
metabolic pathways and transport systems. The data and the
analysis of genes whose responses are specific to glucose
and nitrogen limitations also agree well with previous work
(Boer et al., 2003; Regenberg et al., 2006; Castrillo et al., 2007).
We do not discuss any of these further here.

Expression of About One Quarter of All Yeast Genes Is
Correlated with Growth Rate, but the Magnitudes of the
Slope of the Relationship Are Characteristic for Each
Gene
By a statistical analysis, we identified a large number of
genes (�27% of all yeast genes) each of whose expression is
linearly correlated (either negatively or positively) with the
growth rate, independent of the limiting nutrient. Some of
these genes were much more strongly affected by growth
rate than others, again independent of the identity of the
limiting nutrient. Both hierarchical clustering and SVD anal-
ysis of the entire chemostat data set indicates that the cor-
relation between the steady-state level of mRNA and the
nominal growth rate applies to many genes.

Castrillo et al. (2007) recently published a set of data
entirely consistent with the data set presented here for glu-
cose, nitrogen, sulfur, and phosphate limitations. Although
Castrillo et al. (2007) explored some very similar experimen-
tal conditions, they took a technology survey approach that
included proteomic and metabolomic data in addition to
gene expression levels. Their analysis is focused on the
identification and behavior of individual genes (e.g., TOR1)
that regulate pathways involved in growth regulation,
whereas we attempted a system-level description of the
relationship between growth rate and gene expression, con-
trol of the cell cycle, and metabolism. To this end, we com-
bined traditional observation-based data analysis, including
clustering and decomposition techniques, with a statistical,
model-based study of our gene expression data. The fact that
many genes are expressed in a way correlated with growth
rate, independent of the identity of limiting nutrient,
emerged as a strong conclusion from both studies.

To gain a deeper and less descriptive understanding of the
biological roles of genes whose expression level correlates
with growth rate per se, we introduced another level of
analysis. We took advantage of the observation that expres-
sion of some genes changes more profoundly with differ-
ences in growth rate than others (i.e., the slope of the regres-
sion varies from very negative to very positive). We did
extensive bootstrap analysis to determine the statistical sig-
nificance of the slopes, because correlation itself will natu-
rally be stronger when the slope is steeper: the bootstrap p
values indicate how robust the determination of the slope is
statistically.

The combination of each gene’s growth rate slope (i.e.,
strength of transcriptional response) and the bootstrap p
values of these slopes (i.e., their statistical significance),
given in Supplemental Table S1 for all genes, allows the
rigorous identification of genes responding strongly to
growth rate in a nutrient-independent manner. A histogram
of the slopes for all yeast genes allows one to visualize the
growth rate sensitivity of a single gene or a list of genes
relative to the overall distribution (Figures 5–7). These meth-
ods (also available at http://growthrate.princeton.edu) fa-
cilitate the use of the information from this data set to make
inferences for our own analysis, and to analyze the results of
others (see below).

To focus on the biology of gene expression as a function of
growth rate, we defined (see Materials and Methods for sta-
tistical detail) a subset of 1,608 genes that correlate with a
characteristic slope: 337 had a negative slope, 291 a positive
slope, and 980 a slope near zero (i.e., their expression was
roughly the same at all growth rates). The point to be em-
phasized here is that this stringent a selection of 337 � 291 �
628 (i.e., �10% of all yeast genes) necessarily underestimates
the number of genes with nonzero slopes, because genes
with smaller (positive or negative) slopes and/or noisy data
are likely to fail the statistical tests. The SVD and clustering
estimates (which suggest larger numbers of growth rate
responsive genes) are surely closer to reality; we, therefore,
suggest that expression of at least 27% of yeast genes is
correlated with the nominal growth rate in chemostats, re-
gardless of the nature of the limiting nutrient.

Functional Roles of Genes Whose Expression Is Most
Strongly Related to Growth Rate
GO Term Finder analysis of the subsets of genes with well-
defined slopes (Table 3 and Supplemental Table S2) presents
a very clear picture. The positive-slope subset of 291 genes
focuses on the translation machinery, both cytosolic and
mitochondrial. This result has very strong precedents in
the literature of both bacterial and yeast physiology, where
the correlation between the number of ribosomes and the
growth rate was noted very early (Maaloe and Kjeldgaard,
1966; for more recent reviews, see Nomura, 1999; Warner,
1999; Zhao et al., 2003). The biological logic for this relation-
ship is virtually self-evident: to grow at a faster rate, more
proteins must be made per unit time, which is facilitated by
having more ribosomes per cell.

Many different regulatory mechanisms (most prominent
among them the TOR1 signaling system) have been impli-
cated in this connection (for review, see De Virgilio and
Loewith, 2006a,b). Of particular relevance are the results of
Jorgensen et al. (Jorgensen et al., 2004; Jorgensen and Tyers,
2004), who found a connection between ribosome biosyn-
thesis and cell cycle entry at START (Hartwell, 1974; Hart-
well et al., 1974) via the regulation of both processes by the
products of SFP1 and SCH9.

The negative-slope subset of 337 genes relates to functions
associated with oxidative energy metabolism, especially
those carried out in peroxisomes. Peroxisomes have been
associated with fatty acid metabolism, with oxygen metab-
olism (particularly reactive oxygen) and, more recently, with
autophagy (for reviews, see Kim and Klionsky, 2000; van
Roermund et al., 2003; Monastyrska and Klionsky, 2006;
Rottensteiner and Theodoulou, 2006; Wanders and Water-
ham, 2006). The biological logic here is less obvious, al-
though the benefits of engaging in autophagy and degrada-
tion of cellular materials during nutrient limitation are clear.
Another possibility relates to the metabolism of reactive
oxygen species, for which there might be more need when
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time between cell division cycles is longer. A purely meta-
bolic logic (e.g., a need for more beta-oxidation of fatty acids
at slow growth rates) is more difficult to rationalize. Al-
though reasonable when carbon (in our case glucose) is
limiting, it is not obvious how this might work for the other
limitations, especially those that leave high concentrations of
residual glucose in the medium at steady state.

The statistically derived growth rate-independent subset
(980 genes) is, in this context, equally informative. It in-
cludes a large number of GO terms that cover much of the
remaining yeast cell biology. These 84 GO process terms
notably include such areas as transcription, DNA metabo-
lism, chromatin remodeling, proteolysis, protein secretion
and even the cell cycle, among many others (Supplemental
Table S2 shows an even larger diversity at only slightly
lower p values).

The Idea of an Instantaneous Growth Rate
In previous publications (Saldanha et al., 2004; Brauer et al.,
2005), we showed that the overall pattern of gene expression
in chemostats closely approximates that found in batch cul-
tures that are running out of the same limiting nutrient. At
about the time that the residual level of the limiting nutrient
in the batch culture reaches the level found in the corre-
sponding steady-state chemostat, the pattern of gene expres-
sion in batch approaches that of the chemostat culture. The
simplest interpretation of these results is that somehow the
cells have a way of sensing their instantaneous growth rate.
This interpretation is fortified by our ability to predict, with
a simple quantitative linear model, the instantaneous
growth rate of a batch culture undergoing the diauxic shift
(Figure 8). Our predictions correspond well to the variations
in dissolved oxygen that were measured at the time by
Brauer et al. (2005).

The mechanism(s) that underlie this coordination of gene
expression must be largely independent of the nature of the
growth limitation and also must require very little time to
execute relative to the doubling time. The entire fall and
resurgence of the growth rate in the diauxic shift experiment
covers less than a doubling at the fastest rate on glucose. In
this context, it is very interesting to note that the GO terms
(mainly ribosomal functions) for our positively correlated
gene set corresponds almost exactly to the set identified by
Grigull et al. (2004) in their study of genes regulated post-
transcriptionally by mRNA stability. It is entirely possible to
imagine that when growth slows for any reason, even tran-
siently, translation rates fall concomitantly, and the mRNAs
jointly identified by Grigull et al. (2004) and by the data
provided here become almost immediately unavailable. The
concentration of one or more of these RNAs might, directly
or indirectly, be the carrier of the information that signals
the instantaneous growth rate to other cellular regulatory
systems.

The ability to estimate instantaneous growth rates from
patterns of gene expression could turn out to be a useful
tool. Because it seems that one can estimate this parameter in
diverse media and in batch cultures where the growth rate is
changing (and in continuous cultures), it may be a useful
tool for normalizing quantitative comparisons among exper-
iments done under different conditions (which may other-
wise give results that are systematically biased because of
differences in growth rates).

Instantaneous Growth Rate and the Environmental Stress
Response
Among the positively correlated genes, we found many (but
not all) of the genes whose expression declined during the

environmental stress response as defined by (Gasch et al.,
2000); among the negatively correlated, we found many (but
not all) of the genes whose expression increased in the Gasch
experiments. Similar data were reported recently in Castrillo
et al. (2007). A connection between growth rate and stress
resistance has experimental precedent: Elliott and Futcher
(1993) found that yeast grown in batch at slower growth
rates by using relatively poor sources of carbon or nitrogen
are more resistant to stress, which one might infer to mean
induction of the stress-response genes. Much more recently,
gene expression data consistent with such a connection have
been reported by Slattery and Heideman (2007).

These results raise the possibility that much (but probably
not all) of what has been defined as environmental stress
response might equally well be thought of as a general
response to changes in the instantaneous growth rate. Be-
cause it consists mainly of the most growth rate-sensitive
genes, much of the response could be secondary to a much
smaller number of specific responses to individual environ-
mental stresses. It also is worth noting here that the steady
state mRNA concentrations of the positively growth rate-
correlated genes fall remarkably rapidly after applications of
stresses (Gasch et al., 2000), consistent with the idea of reg-
ulation at the level of mRNA degradation (Grigull et al.,
2004) and transcription.

It may well turn out that regulatory mechanisms and even
actual regulators are shared and overlap between responses
to specific stress and simple reductions in instantaneous
growth rate.

At Least Two Mechanisms Must Exist Connecting Entry
into the Cell Division Cycle with Metabolism
We found a simple linear relationship, again independent of
the limiting nutrient, between steady-state growth rate and the
fraction of unbudded (i.e., G0/G1) cells, consistent with the
hypothesis (first proposed by Unger and Hartwell, 1976)
that at reduced growth rates, yeast cells spend correspond-
ingly increased amounts of time in the phase of the cell cycle
just before “START” (i.e., the activation of the cyclin-depen-
dent kinase Cdc28p; Pringle and Hartwell, 1981). This rela-
tionship holds for all nutrient limitations and accords gen-
erally with current views of cell cycle regulation (e.g., Laabs
et al., 2003; Verges et al., 2007; for recent reviews, also see
Futcher, 2002; Jorgensen and Tyers, 2004; Schneider et al.,
2004; Bloom and Cross, 2007). Our observations support a
mechanism that is independent of the nature of growth
limitation. The classical model wherein START is passed
when the cyclin/DNA ratio is above a threshold is such a
model, and it is consistent with these data.

However, the results from batch cultures cannot be ex-
plained so simply. As found in Saldanha et al. (2004), we
again observed that ura3 or leu2 auxotrophs depleted of
limiting uracil or leucine do not properly arrest growth in an
unbudded state, whereas the same strains will arrest prop-
erly when limited on phosphate with excess uracil or leucine
(Table 2). This result is not easily reconciled with the classi-
cal models; indeed, it is in apparent conflict with the obser-
vation that these same auxotrophs limit entry into the cell
cycle in just the same way as do prototrophs in limiting
glucose, ammonia, phosphate or sulfate (which we call nat-
ural nutrients, after Saldanha et al., 2004).

This result is made more interesting by our additional
remarkable observation, in both batch and continuous cul-
tures, that excess glucose is spared when cultures limit on
the natural nutrients, whereas it is fermented completely to
ethanol when cultures are limited by auxotrophic require-
ments. The combination of a defective regulation of the cell
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division cycle with uncontrolled glucose fermentation is
reminiscent of the “Warburg effect” in human cancer cells.
(Warburg, 1956) reported a now general observation that
most human cancer cells, even under aerobic conditions,
will exhaust the glucose in their medium by fermentation to
lactate, whereas normal cells and tissues will spare the glu-
cose (for review, see Kim and Dang, 2006).

Together, these results point to the existence in Saccharo-
myces cerevisiae of at least two regulatory systems that func-
tion in coordinating growth rate, cell division, and metabo-
lism. One of these, which seems to be independent of the
type of nutrient limitation, seems to continuously limit entry
into the cell cycle based on the growth rate without produc-
ing a full cell cycle arrest. This could be the mechanism
envisioned in the classical models. The other, which we
believe functions only when a natural nutrient is totally
depleted, seems to cause a more complete cell cycle arrest in
batch cultures and, we suggest, may also act to prevent
unlimited fermentation of any remaining glucose.

We suggest that both of these mechanisms must somehow
respond to the instantaneous growth rate: one acts in a
graded manner limiting cell cycle entry, and the other acts
only when starvation is imminent.

Is There a Connection between Growth Rate Control
and the Metabolic Cycling Phenomenon?
One of the more surprising results we obtained is that of the
�800 genes that seem to be periodically expressed during
cells synchronized in all the standard ways (Spellman et al.,
1998; Pramila et al., 2006), relatively few were strongly cor-
related to growth rate with steep slopes. Because there is
such a large difference in the fraction of cells in G0/G1 at
low growth rate compared with high, we anticipated that we
might see more than the relatively modest enrichment we
found in the genes whose mRNA abundance peaks in M/G1
(Figure 6). What was not observed by Spellman et al. (1998)
or Pramila et al. (2006) when they synchronized cells with
mating factors, drugs or cdc mutants, was periodicity of
expression of the several major classes of genes we found
strongly correlated, negatively or positively, with growth
rate.

A similar analysis using the data of Tu et al. (2005), which
derives from cultures synchronously undergoing metabolic
cycling, produced a completely different picture (Figure 7),
even though they used the same CEN.PK strain we used.
Many (	800) genes are periodically expressed in the meta-
bolic cycling regime. There seems to be a striking concor-
dance between the sets of genes that Tu et al. (2005) see
strongly expressed during the several phases of their meta-
bolic cycle and the subsets of genes we defined as being
most correlated with growth rate. It is important to note that
in all the metabolic cycling experiments, the genes that are
periodic under the standard synchronization conditions are
generally also periodically expressed, with periods synchro-
nized to the metabolic cycles (Klevecz et al., 2004; Tu et al.,
2005; Kudlicki et al., 2007). The set of genes associated with
the “oxidative phase” of the metabolic cycle is bimodal in
Figure 7, but the majority of the genes are the same ones
associated with the peroxisome and its metabolic functions.
The sum of all the genes associated with the other phases
roughly comprises our gene subset whose expression is
positively correlated with growth rate and whose functions
are strongly associated with the cytoplasmic and mitochon-
drial translational machinery.

What are we to make of this concordance? One simple
hypothesis, which is quite testable, is that there is a meta-
bolic cycle under all conditions, but only under the condi-

tions used by Tu et al. (2005) and Klevecz et al. (2004) do
entire cultures become synchronous, possibly because of
changes in the medium (e.g., dissolved oxygen, pH, and
residual glucose). The only immediate difficulty with this
hypothesis is that synchronization of the cell division cycle
under the classical conditions, in several laboratories, pro-
duced no sign of synchronization of expression of the char-
acteristic subsets of genes found during metabolic cycling
(Tu et al., 2005), stress response (Gasch et al., 2000), or by
correlation with growth rate in continuous culture (Castrillo
et al., 2007; this study).

Another way to look at the problem, which is more diffi-
cult to test, is to suppose that the conditions of metabolic
cycling involve changes in the extracellular medium, as
described above, that result in changes in the instantaneous
growth rate. This would result in periodicity of the genes
strongly correlated to the instantaneous growth rate. The
suggestion by Futcher (2006); compare (Kuenzi and Fiechter,
1969; Kasper von Meyenburg, 1969), which posits that cells
use accumulated stores of fermentable sugar to provide a
“finishing kick” to metabolism that allows the cells to pass
START, is a nice variant of this idea.

Both Tu et al. (2005) and others (Futcher, 2006; Chen et al.,
2007) imagine that some or all of the evolutionary pressure
that results in metabolic cycling might be driven by the need
to minimize (or avoid entirely) the damage to DNA from the
inevitable reactive oxygen by-products of respiratory metab-
olism. The prominence of genes associated with peroxisomal
functions supports such a proposal. Lower growth rates
require longer exposure to oxidative metabolism in order to
produce enough energy, and this might be the reason that
genes encoding the peroxisomal functions are preferentially
expressed.

CONCLUSIONS

We have shown that a large fraction of all yeast genes are
expressed to a degree that is linearly related to the growth
rate, regardless of the nature of the limitation on growth.
The slopes, indicating the relation of each gene’s expression
to growth rate, can be used to evaluate the likelihood that
changes in gene expression might be related to changes
(apparent or not) in growth status of yeast cells. On this
basis, we have found that there may well be changes in what
we define as instantaneous growth rate in cells undergoing
a stress responses or metabolic cycling.

In the Supplement Material and on our website http://
growthrate.princeton.edu, we provide, in addition to an ex-
tensive new expression data set, growth rate sensitivity in-
formation for every yeast gene. We also provide
computational tools that allow these tables to be used to
evaluate other data sets even when the growth rate is chang-
ing, uncertain, or unknown.

We also describe a new phenomenon in yeast, analogous
to the glucose wasting Warburg effect in cancer cells. Auxo-
trophs starving for their growth requirements waste glucose
and fail to arrest properly at G0/G1. Neither phenotype is
seen when the same cells are starved for phosphate or sul-
fate. We interpret these results as indicating that there must
be at least two mechanisms that connect metabolism and
entry into the cell division cycle, both of which must some-
how sense the instantaneous growth rate.
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